搜索二维矩阵

该文章介绍了一个高效的算法,用于判断一个具有特定排序特性的mxn矩阵中是否存在特定的目标值。矩阵的每一行从左到右升序排列,且每一行的第一个元素大于前一行的最后一个元素。算法通过迭代矩阵的行和列,以O(logmn)的时间复杂度找到目标值或确定其不存在。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

编写一个高效的算法来判断 m x n 矩阵中,是否存在一个目标值。该矩阵具有如下特性:

每行中的整数从左到右按升序排列。
每行的第一个整数大于前一行的最后一个整数。

示例 1:

输入:matrix = [[1,3,5,7],[10,11,16,20],[23,30,34,60]], target = 3
输出:true
示例 2:

输入:matrix = [[1,3,5,7],[10,11,16,20],[23,30,34,60]], target = 13
输出:false

提示:

m == matrix.length
n == matrix[i].length
1 <= m, n <= 100
-104 <= matrix[i][j], target <= 104

    public static boolean searchMatrix(int[][] matrix, int target) {
        int x = 0,y = matrix[0].length-1,lengthx = matrix.length;
        while (x != lengthx && y>=0) {
            if (matrix[x][y] == target) {
                return true;
            } else if (matrix[x][y] < target) {
                x++;
            } else {
                y--;
            }
        }
        return false;
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值