线性代数 矩阵运算

一、加法

[ 1 0 2 1 3 2 ] + [ 1 0 2 1 3 2 ] = [ 2 0 4 2 6 4 ] \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 3 & 2 \end{bmatrix}+\begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 3 & 2 \end{bmatrix}= \begin{bmatrix} 2 & 0 \\ 4 & 2 \\ 6 & 4 \end{bmatrix} 123012 + 123012 = 246024

二、标量乘法

2 ∗ [ 1 0 2 1 3 2 ] = [ 2 0 4 2 6 4 ] = [ 1 0 2 1 3 2 ] ∗ 2 2*\begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 3 & 2 \end{bmatrix}= \begin{bmatrix} 2 & 0 \\ 4 & 2 \\ 6 & 4 \end{bmatrix}= \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 3 & 2 \end{bmatrix}*2 2 123012 = 246024 = 123012 2

三、向量乘法

[ 1 2 3 ] ∗ [ 1 2 3 ] = [ 1 ∗ 1 + 2 ∗ 2 + 3 ∗ 3 ] = 14 \begin{bmatrix} 1&2 &3 \end{bmatrix}* \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}= \begin{bmatrix} 1*1+2*2+3*3 \end{bmatrix}= 14 [123] 123 =[11+22+33]=14

[ 1 2 3 ] ∗ [ 1 2 3 ] = [ 1 ∗ 1 1 ∗ 2 1 ∗ 3 2 ∗ 1 2 ∗ 2 2 ∗ 3 3 ∗ 1 3 ∗ 2 3 ∗ 3 ] = [ 1 2 3 2 4 6 3 6 9 ] \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}* \begin{bmatrix} 1&2 &3 \end{bmatrix}= \begin{bmatrix} 1*1 & 1*2 & 1*3 \\ 2*1 & 2*2 & 2*3 \\ 3*1 & 3*2 & 3*3 \\ \end{bmatrix}= \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \\ \end{bmatrix} 123 [123]= 112131122232132333 = 123246369

[ 1 0 2 1 3 2 ] ∗ [ 1 2 ] = [ 1 ∗ 1 + 0 ∗ 2 2 ∗ 1 + 1 ∗ 2 3 ∗ 1 + 2 ∗ 2 ] = [ 1 2 7 ] \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 3 & 2 \end{bmatrix}* \begin{bmatrix} 1 \\ 2 \\ \end{bmatrix}= \begin{bmatrix} 1*1+0*2 \\ 2*1+1*2\\ 3*1+2*2 \end{bmatrix}= \begin{bmatrix} 1 \\ 2\\ 7 \end{bmatrix} 123012 [12]= 11+0221+1231+22 = 127

[ 1 0 2 1 3 2 ] ∗ [ 1 0 2 1 ] = [ 1 ∗ 1 + 0 ∗ 2 1 ∗ 0 + 0 ∗ 1 2 ∗ 1 + 1 ∗ 2 2 ∗ 0 + 2 ∗ 1 3 ∗ 1 + 2 ∗ 2 3 ∗ 0 + 3 ∗ 1 ] = [ 1 0 2 2 7 3 ] \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 3 & 2 \end{bmatrix}* \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ \end{bmatrix}= \begin{bmatrix} 1*1+0*2 & 1*0+0*1\\ 2*1+1*2 & 2*0+2*1\\ 3*1+2*2 & 3*0+3*1 \end{bmatrix}= \begin{bmatrix} 1 & 0\\ 2 & 2\\ 7 & 3 \end{bmatrix} 123012 [1201]= 11+0221+1231+2210+0120+2130+31 = 127023

四、转置

记作 A T A^T AT A ′ A^′ A
A = [ 1 2 3 ] , A T = [ 1 2 3 ] A=\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}, A^T=\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} A=[123]AT= 123
A = [ 1 0 2 1 3 2 ] , A T = [ 1 2 3 0 1 2 ] A=\begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 3 & 2 \end{bmatrix}, A^T=\begin{bmatrix} 1 & 2 &3 \\ 0 & 1 & 2 \\ \end{bmatrix} A= 123012 AT=[102132]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值