一、加法
[ 1 0 2 1 3 2 ] + [ 1 0 2 1 3 2 ] = [ 2 0 4 2 6 4 ] \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 3 & 2 \end{bmatrix}+\begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 3 & 2 \end{bmatrix}= \begin{bmatrix} 2 & 0 \\ 4 & 2 \\ 6 & 4 \end{bmatrix} ⎣ ⎡123012⎦ ⎤+⎣ ⎡123012⎦ ⎤=⎣ ⎡246024⎦ ⎤
二、标量乘法
2 ∗ [ 1 0 2 1 3 2 ] = [ 2 0 4 2 6 4 ] = [ 1 0 2 1 3 2 ] ∗ 2 2*\begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 3 & 2 \end{bmatrix}= \begin{bmatrix} 2 & 0 \\ 4 & 2 \\ 6 & 4 \end{bmatrix}= \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 3 & 2 \end{bmatrix}*2 2∗⎣ ⎡123012⎦ ⎤=⎣ ⎡246024⎦ ⎤=⎣ ⎡123012⎦ ⎤∗2
三、向量乘法
[ 1 2 3 ] ∗ [ 1 2 3 ] = [ 1 ∗ 1 + 2 ∗ 2 + 3 ∗ 3 ] = 14 \begin{bmatrix} 1&2 &3 \end{bmatrix}* \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}= \begin{bmatrix} 1*1+2*2+3*3 \end{bmatrix}= 14 [123]∗⎣ ⎡123⎦ ⎤=[1∗1+2∗2+3∗3]=14
[ 1 2 3 ] ∗ [ 1 2 3 ] = [ 1 ∗ 1 1 ∗ 2 1 ∗ 3 2 ∗ 1 2 ∗ 2 2 ∗ 3 3 ∗ 1 3 ∗ 2 3 ∗ 3 ] = [ 1 2 3 2 4 6 3 6 9 ] \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}* \begin{bmatrix} 1&2 &3 \end{bmatrix}= \begin{bmatrix} 1*1 & 1*2 & 1*3 \\ 2*1 & 2*2 & 2*3 \\ 3*1 & 3*2 & 3*3 \\ \end{bmatrix}= \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \\ \end{bmatrix} ⎣ ⎡123⎦ ⎤∗[123]=⎣ ⎡1∗12∗13∗11∗22∗23∗21∗32∗33∗3⎦ ⎤=⎣ ⎡123246369⎦ ⎤
[ 1 0 2 1 3 2 ] ∗ [ 1 2 ] = [ 1 ∗ 1 + 0 ∗ 2 2 ∗ 1 + 1 ∗ 2 3 ∗ 1 + 2 ∗ 2 ] = [ 1 2 7 ] \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 3 & 2 \end{bmatrix}* \begin{bmatrix} 1 \\ 2 \\ \end{bmatrix}= \begin{bmatrix} 1*1+0*2 \\ 2*1+1*2\\ 3*1+2*2 \end{bmatrix}= \begin{bmatrix} 1 \\ 2\\ 7 \end{bmatrix} ⎣ ⎡123012⎦ ⎤∗[12]=⎣ ⎡1∗1+0∗22∗1+1∗23∗1+2∗2⎦ ⎤=⎣ ⎡127⎦ ⎤
[ 1 0 2 1 3 2 ] ∗ [ 1 0 2 1 ] = [ 1 ∗ 1 + 0 ∗ 2 1 ∗ 0 + 0 ∗ 1 2 ∗ 1 + 1 ∗ 2 2 ∗ 0 + 2 ∗ 1 3 ∗ 1 + 2 ∗ 2 3 ∗ 0 + 3 ∗ 1 ] = [ 1 0 2 2 7 3 ] \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 3 & 2 \end{bmatrix}* \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ \end{bmatrix}= \begin{bmatrix} 1*1+0*2 & 1*0+0*1\\ 2*1+1*2 & 2*0+2*1\\ 3*1+2*2 & 3*0+3*1 \end{bmatrix}= \begin{bmatrix} 1 & 0\\ 2 & 2\\ 7 & 3 \end{bmatrix} ⎣ ⎡123012⎦ ⎤∗[1201]=⎣ ⎡1∗1+0∗22∗1+1∗23∗1+2∗21∗0+0∗12∗0+2∗13∗0+3∗1⎦ ⎤=⎣ ⎡127023⎦ ⎤
四、转置
记作
A
T
A^T
AT或
A
′
A^′
A′
A
=
[
1
2
3
]
,
A
T
=
[
1
2
3
]
A=\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}, A^T=\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}
A=[123],AT=⎣
⎡123⎦
⎤
A
=
[
1
0
2
1
3
2
]
,
A
T
=
[
1
2
3
0
1
2
]
A=\begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 3 & 2 \end{bmatrix}, A^T=\begin{bmatrix} 1 & 2 &3 \\ 0 & 1 & 2 \\ \end{bmatrix}
A=⎣
⎡123012⎦
⎤,AT=[102132]