定义
引起图像几何变形一般分为两大类:系统性和非系统性。
- 系统性一般有传感器本身引起的,有规律可循和可预测性,可以用传感器模型来校正
- 非系统性几何变形是不规律的,它可以是传感器平台本身的高度、姿态等不稳定,也可以是地球曲率及空气折射的变化以及地形的变化等。
常说的几何校正,就是要消除这些非系统性几何形变。
图像配准:图像配准就是设法建立两幅图像之间的对应关系,确定相应几何变换参数,对两幅图像中的一幅进行几何变换的方法。
图像配准和几何变换的差异:两者的过程完全一样,但是意义和目的不同。几何校正注重的是数据本身的处理,目的是为了对数据的一种真实性还原。配准只要求一图像与另一幅图像配准,而不在乎该参考图像的几何精度高与否,只求两图像的对应位置坐标一致。如果配准的参考图像几何精度很高,那么他同时也进行了几何纠正。
多项式纠正
下面来介绍一种方法:
定义和公式
多项式纠正:该方法是常用的一种几何纠正方法,遥感影像的总体变形可以看为是对影像的平移,缩放,旋转,仿射偏扭弯曲以及更高层的基本变形的综合作用的结果,因此可以设计一个数学函数来表示图像的变形。一般情况下是选用多项式作为纠正变换函数表达纠正前后影像同名像点之间的坐标变换关系。
多项式模型
x=a0+a1X+a2Y+a3X2+a4XY+a5Y2+…
y=b0+b1X+b2Y+ b3X2+ b4XY+b5Y2+…
根据X和Y的值,可以求出各个系数,那么需要多少个X和Y呢?
最少控制点个数:(n+1)^2
误差RMS
误差计算
RMSEerror=sqrt ((x’ -x )^2+(y’ -y)^2 )
亮度的确定(重采样方法)
在用多项式纠正确定了位置,还得确定亮度的大小
最近邻法
最近邻法:取与所计算点(x,y)周围相邻的4个点,比较它们与被计算点的距离,哪个点距离最近,就取哪个亮度值作为( x,y)点的亮度值
简单易用,计算量小,图像的亮度具有不连续性,精度差
三次卷积内插法
- 进一步提高内插精度的一种方法,通过增加邻点来获得最佳插值函数
- 取与计算点周围相邻的16个点先在某一方向内插,再根据计算结果在另一个方向上内插,得到一个连续内插函数
- 计算量大,精度高,细节表现更为清楚,对控制点要求较高
流程演示
数据加载、发现问题
先加载两个影像,可见display2没有Map Info的datum基准数据,那么我们需要进行图像配准的就是通过display1得到display2的基准数据
进行image-image配准
Map>Registration > Select GCPs:Image to Image
Base Image:基础数据
Warp Image:校正数据
选点
图像选点原则
- 选取图像上易分辨且较精细的特征点:道路交叉点,河流弯曲或分叉处,海岸线弯曲处,飞机场,城廓边缘等
- 特征变化大的地区需要多选
- 图像边缘部分一定要选取控制点√尽可能满幅均匀选取
数量原则
- 在图像边缘处,在地面特征变化大的地区,需要增加控制点√保证一定数量的控制点,不是控制点越多越好。如一景TM的控制点数量在30-50左右。
要求:确保RMS在0到1之间
当点的精度高的时候,可以点击predict进行选点
我选取了11个点,RMS在0.284134
输出数据
Options->Warp File(as Image to Map)
还有一个是Options->Warp File,这个会自动配准基准影像的数据,像元大小,个数等等,但是一般这个我们不做改变,所以还是用原来的数据
影像链接
tool->geographic links