ENVI图像处理(7):图像配准

本文介绍了图像配准的概念及其在消除非系统性几何形变中的应用,并详细阐述了多项式纠正方法,包括其定义、公式及所需控制点数量。此外还对比了最近邻法与三次卷积内插法在确定重采样后图像亮度方面的优缺点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

定义

引起图像几何变形一般分为两大类:系统性和非系统性。

  • 系统性一般有传感器本身引起的,有规律可循和可预测性,可以用传感器模型来校正
  • 非系统性几何变形是不规律的,它可以是传感器平台本身的高度、姿态等不稳定,也可以是地球曲率及空气折射的变化以及地形的变化等。

常说的几何校正,就是要消除这些非系统性几何形变。

图像配准:图像配准就是设法建立两幅图像之间的对应关系,确定相应几何变换参数,对两幅图像中的一幅进行几何变换的方法。

图像配准和几何变换的差异:两者的过程完全一样,但是意义和目的不同。几何校正注重的是数据本身的处理,目的是为了对数据的一种真实性还原配准只要求一图像与另一幅图像配准,而不在乎该参考图像的几何精度高与否,只求两图像的对应位置坐标一致。如果配准的参考图像几何精度很高,那么他同时也进行了几何纠正。

多项式纠正

下面来介绍一种方法:

定义和公式

多项式纠正:该方法是常用的一种几何纠正方法,遥感影像的总体变形可以看为是对影像的平移,缩放,旋转,仿射偏扭弯曲以及更高层的基本变形的综合作用的结果,因此可以设计一个数学函数来表示图像的变形。一般情况下是选用多项式作为纠正变换函数表达纠正前后影像同名像点之间的坐标变换关系。

多项式模型
x=a0+a1X+a2Y+a3X2+a4XY+a5Y2+…
y=b0+b1X+b2Y+ b3X2+ b4XY+b5Y2+…

根据X和Y的值,可以求出各个系数,那么需要多少个X和Y呢?

最少控制点个数:(n+1)^2

误差RMS

误差计算
RMSEerror=sqrt ((x’ -x )^2+(y’ -y)^2 )

亮度的确定(重采样方法)

在用多项式纠正确定了位置,还得确定亮度的大小

最近邻法

最近邻法:取与所计算点(x,y)周围相邻的4个点,比较它们与被计算点的距离,哪个点距离最近,就取哪个亮度值作为( x,y)点的亮度值

简单易用,计算量小,图像的亮度具有不连续性,精度差

三次卷积内插法

  • 进一步提高内插精度的一种方法,通过增加邻点来获得最佳插值函数
  • 取与计算点周围相邻的16个点先在某一方向内插,再根据计算结果在另一个方向上内插,得到一个连续内插函数
  • 计算量大,精度高,细节表现更为清楚,对控制点要求较高

流程演示

数据加载、发现问题

先加载两个影像,可见display2没有Map Info的datum基准数据,那么我们需要进行图像配准的就是通过display1得到display2的基准数据
在这里插入图片描述

进行image-image配准

Map>Registration > Select GCPs:Image to Image

Base Image:基础数据
Warp Image:校正数据
在这里插入图片描述

选点

图像选点原则

  • 选取图像上易分辨且较精细的特征点:道路交叉点,河流弯曲或分叉处,海岸线弯曲处,飞机场,城廓边缘等
  • 特征变化大的地区需要多选
  • 图像边缘部分一定要选取控制点√尽可能满幅均匀选取

数量原则

  • 在图像边缘处,在地面特征变化大的地区,需要增加控制点√保证一定数量的控制点,不是控制点越多越好。如一景TM的控制点数量在30-50左右。

要求:确保RMS在0到1之间

当点的精度高的时候,可以点击predict进行选点

我选取了11个点,RMS在0.284134
在这里插入图片描述

输出数据

Options->Warp File(as Image to Map)

还有一个是Options->Warp File,这个会自动配准基准影像的数据,像元大小,个数等等,但是一般这个我们不做改变,所以还是用原来的数据

在这里插入图片描述

影像链接

tool->geographic links

### ENVI 软件中的图像校正方法与教程 ENVI 是一款功能强大的遥感图像处理软件,在几何校正方面提供了多种工具和选项。以下是基于提供的引用内容以及专业知识整理的内容。 #### 几何校正的目的与意义 几何校正是为了消除由于传感器姿态变化、地形起伏等因素引起的图像变形,使得经过校正后的图像能够符合特定的地理坐标系[^3]。通过这一过程,可以提高图像的空间定位精度,从而满足后续定量分析的要求。 #### 实验备与环境置 在进行几何校正之前,需备好相应的软硬件条件: - **硬件需求**: PC 电脑 (推荐 Windows10 操作系统)[^1]。 - **软件需求**: 安装并启动 ENVI 5.3 或更高版本。 - **数据备**: 提供待校正的原始遥感图像文件(如 SPOT 和 TM 数据),以及其他必要的辅助数据(如 DEM 文件用于正射校正)[^2]。 #### 几何校正的主要分类 根据校正目标的不同,几何校正可分为两类: 1. **几何粗校正** 主要针对已知成像过程中产生的固定误差进行修正,通常依赖于传感器自身的参数模型完成。这种方法适用于初步纠正因扫描仪角度偏差等原因造成的简单形变[^3]。 2. **几何精校正** 借助地面控制点(GCPs),实现更精确的位置匹。此步骤不仅涉及坐标的转换还可能伴随辐射定标等内容,最终目的是让像素对应到实际地球表面的具体经纬度位置上[^3]。 #### 具体操作流程说明 ##### 方法一:Image to Image 校正 这是最基础的一种形式,适合当已有参考标地图可用时的情况。具体做法如下: 1. 启动应用程序进入经典界面后加载两幅对比图片; 2. 手动标记若干组对应的地标特征作为参照依据; 3. 应用多项式变换算法估算映射关系; 4. 输出重采样之后的新成果图层[^1]。 ```python # 示例代码展示如何调用 ENVI 的 API 进行简单的几何校正 import envi def perform_image_to_image_correction(input_file, reference_file, output_path): session = envi.Session() input_raster = session.openRaster(input_file) ref_raster = session.openRaster(reference_file) gcps = [] # 用户定义 GCP 列表 correction_tool = session.getTool('Geometric Correction') result = correction_tool.run( source=input_raster, target=ref_raster, ground_control_points=gcps, method='Polynomial', degree=2, resampling_method='Cubic Convolution' ) corrected_image = result['output'] corrected_image.save(output_path) perform_image_to_image_correction('path/to/input', 'path/to/reference', 'path/to/output') ``` ##### 方法二:Image to Map 正射校正 如果希望进一步考虑地形影响,则可以选择该高级方案。其核心在于引入数字高程模型(DEM)来补偿由高度差带来的投影差异。整个工作流大致包括以下几个环节: 1. 加载源影像连同套的元信息文档; 2. 设置合适的传感器类型及其关联参数; 3. 自动或者交互指定多个高质量的地物标志点; 4. 经过迭代优化求解最佳拟合方程式; 5. 设计好输出范围大小比例尺等细节设定项; 6. 导出最后生成的产品文件[^2]。 --- ### 注意事项 - 控制点的数量应足够多以覆盖整张画面均匀分布;同时也要保证质量可靠避免误对现象发生。 - 对于复杂场景下的精细调整来说,建议选用三次卷积插值法之类的高端技术手段提升视觉效果连续性和真实性。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

妖怪喜欢风

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值