Linux安装LLaMA Factory

LLaMA Factory 是一个简单易用且高效的大型语言模型训练与微调平台。通过它,用户可以在无需编写任何代码的前提下,在本地完成上百种预训练模型的微调。

安装conda

Conda 是一个开源的跨平台、语言无关的软件包管理系统与环境管理系统。它能方便地安装、运行和更新软件包及其依赖项,还可创建、切换和删除隔离的软件环境 。

简单点说就是用来做python包管理的,可以专门为LLaMA Factory开辟一个运行环境,这样就不会与其他的运行环境产生冲突。(这个不是必须的,但最好还是安装一下)

conda下载地址:Download Anaconda Distribution | Anaconda

下载完成后,把文件传到linux服务器上,进行安装。

一路直接回车或者输入yes,根据提示进行安装。

在安装过程中,注意下这个安装的路径,在后面可能会用到。

等待安装完成,可以查看关于conda的一些信息:

使用 conda create 命令创建一个新的虚拟环境。例如,创建一个名为 lf (LLaMA Factory 简称)的虚拟环境,并指定 Python 版本为 3.10:

conda create -n lf python=3.10

如果在创建虚拟环境时报错,更换一下安装源:

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r/

conda config --set show_channel_urls yes

激活名称为if的conda环境 

conda activate lf

使用 conda env list 命令查看所有已创建的虚拟环境:

conda env list

该命令会列出所有虚拟环境的名称和对应的路径(前面带 * 的为当前已激活的虚拟环境)

安装LLaMA Factory

下载源码,下载地址:

https://github.com/hiyouga/LLaMA-Factory

源码下载后,把源码放到linux服务器上,然后进入到代码目录,在conda的if虚拟环境中执行:

pip install -e ".[torch,metrics]"

如果这一步执行报错,更换国内pip源,执行下面的命令:

pip install -e ".[torch,metrics]" -i https://pypi.tuna.tsinghua.edu.cn/simple

等待执行完毕。

执行 llamafactory-cli version 验证安装情况:

llamafactory-cli version

执行 which llamafactory-cli 可以发现,llamafactory 被安装在了 conda 创建的虚拟环境目录下:

which llamafactory-cli

依赖安装完成后,执行:llamafactory-cli webui,可以启动 LLaMa Factory 的 webui:

llamafactory-cli webui

这种启动方式如果把当前会话关闭,UI就无法访问,可以使用下面的命令启动,就可以保持长链接,即使会话关闭了,UI界面仍可以访问:

nohup llamafactory-cli webui > llama.log 2>&1 &

UI界面启动成功,使用 IP:7860 端口进行访问

 

到此,LLaMA Factory在linux服务器上的安装就完成了。 

配置模型

在LLaMA Factory页面中,选择了模型后,可能是因为网络原因,会导致加载模型失败,这种情况可以通过把模型自己下载后,然后把模型路径改为本地模型的路径,来解决。

在模型平台上下载模型,比如Hugging Face

找打模型后,进入文件页面,点击下载按钮,把所有的文件都下载下来。

把下载后的文件,放到一个文件夹中,然后传到服务器上,如下图所示:

 

在 在LLaMA Factory页面中,重新选择模型,路径填写模型文件的存放路径,如下图:

点击加载模型,就可以正常加载了。

<think>好的,用户让我介绍一下在Linux安装Llama-Factory的步骤,或者关于它的相关信息。首先,我需要确认Llama-Factory是什么。根据之前的知识,Llama-Factory可能是一个用于微调大型语言模型(如LLaMA)的框架或工具包,类似于其他微调库,比如Hugging Face的Transformers或者PEFT。不过,我不太确定它的具体功能和当前状态,可能需要进一步验证。 接下来,我需要考虑用户的请求是否可能涉及拼写错误。比如,"llama-factory bit"中的"bit"是否有特殊含义,还是用户可能打错了,比如想输入“git”或者“bitsandbytes”?如果是后者,可能需要调整回答的方向。但根据上下文,用户可能主要关注安装步骤,所以先假设“bit”是无关的,或者可能是指某个特定版本或组件,但暂时先忽略,专注于Llama-Factory本身。 然后,我需要回忆或查找Llama-Factory的官方资料。假设它是一个开源项目,可能在GitHub上有仓库。我需要检查安装步骤通常包括哪些:克隆仓库、安装依赖、设置环境变量、下载模型权重等。同时,需要注意可能的依赖项,比如Python版本、PyTorch、CUDA等。 用户可能是在Linux环境下进行机器学习模型微调,所以需要指导他们安装必要的库,并处理可能的权限问题。此外,模型权重可能需要单独申请或下载,特别是像LLaMA这样的模型,需要用户从Meta获取许可,这可能是一个步骤需要提及。 另外,考虑到用户可能对Linux命令不太熟悉,需要详细说明每个步骤,例如使用git克隆仓库,使用pip安装依赖,设置虚拟环境等。同时,需要提醒可能的常见问题,比如CUDA版本不兼容,依赖冲突,或者权限问题。 可能还需要区分Llama-Factory的不同版本或分支,比如是否有PyPI包,或者只能通过源码安装。如果项目有文档,最好参考最新文档,但假设现在无法联网,只能基于现有知识回答。 最后,要确保回答结构清晰,分步骤说明,并包含注意事项,例如模型权重的获取、依赖版本、虚拟环境的使用建议,以及测试安装是否成功的方法。</think>以下是在 Linux 系统上安装 **Llama-Factory**(一个用于微调 LLaMA 等大语言模型的工具包)的通用步骤和注意事项: --- ### **1. 环境准备** - **系统要求**:确保是较新的 Linux 发行版(如 Ubuntu 20.04+),并已安装基础开发工具。 - **Python 环境**: - 推荐 Python 3.8+。 - 使用 `conda` 或 `venv` 创建虚拟环境(避免依赖冲突): ```bash conda create -n llama_factory python=3.10 conda activate llama_factory ``` --- ### **2. 安装 Llama-Factory** - **从源码安装**(常见方式): ```bash git clone https://github.com/hiyouga/LLaMA-Factory.git cd LLaMA-Factory pip install -r requirements.txt ``` 如果网络问题导致安装失败,可尝试更换 pip 源(如 `-i https://pypi.tuna.tsinghua.edu.cn/simple`)。 - **可选依赖**: - 若需 GPU 加速,确保已安装对应版本的 `CUDA` 和 `PyTorch`(参考官方文档)。 - 如需量化支持(如 4-bit 训练),需安装 `bitsandbytes`: ```bash pip install bitsandbytes # 可能需要 CUDA 兼容版本 ``` --- ### **3. 准备模型权重** - **LLaMA 模型**: - 需自行从 Meta 官方申请模型权重(如 LLaMA-1/2),或使用开源替代品(如 `Chinese-LLaMA-Alpaca`)。 - 下载后,将模型文件放置在 `LLaMA-Factory/data` 或自定义路径中。 - **配置文件**: - 根据模型类型修改配置文件(如 `train_args.yaml`),指定模型路径、训练参数等。 --- ### **4. 运行示例** - **启动训练**(示例): ```bash python src/train_bash.py \ --model_name_or_path /path/to/your_model \ --dataset_dir /path/to/dataset \ --stage sft \ --do_train ``` 具体参数需参考项目文档和数据集类型。 --- ### **5. 常见问题** - **CUDA 兼容性**:确保 PyTorch 版本与 CUDA 驱动匹配(通过 `nvidia-smi` 查看 CUDA 版本)。 - **权限问题**:若使用 Docker 或非 root 用户,注意文件权限。 - **显存不足**:尝试减小 `batch_size` 或启用量化(如 `--quantization_bit 4`)。 --- ### **补充说明** - **Llama-Factory 的功能**:支持全参数微调、LoRA、QLoRA 等高效微调方法,适用于对话生成、指令遵循等任务。 - **文档参考**:务必查阅项目的 [GitHub Wiki](https://github.com/hiyouga/LLaMA-Factory) 获取最新配置和示例。 如果有具体错误或需求,可提供更多细节进一步分析!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值