蚂蚁百宝箱 3 分钟上手 MCP:6 步轻松构建 Qwen3 智能体应用并发布小程序

蚂蚁百宝箱 3 分钟上手 MCP:6 步轻松构建 Qwen3 智能体应用并发布小程序

想象一下,一个能说 119 种语言的 AI,不仅能为你规划旅行路线、讲解异国风情,还能自然地向用户收取小费。

借助 Qwen3 的强大语言理解与生成能力,结合支付宝 MCP 的支付能力,你的智能体,终于可以“收钱”了!
蚂蚁百宝箱3分钟上手MCP:6步轻松构建Qwen3智能体应用并发布小程序

这不仅是一次技术栈的组合,更是 AI 真正迈入实用、可变现阶段的关键一步。从“能用”到“能赚”,从单轮问答到闭环服务,AI 正在变成一个具备商业模型的“数字员工”。

背景

近期,阿里云推出的 Qwen3 模型系列全面升级,旗舰模型 Qwen3-235B-A22B 在代码、数学、推理等多个能力维度表现亮眼,同时具备出色的多语言适应能力,原生支持 119 种语言和方言,是构建“出海级”智能体的天然底座。

前不久,蚂蚁集团的智能体平台——蚂蚁百宝箱也全面开放了 MCP 专区,支持接入包括支付宝支付、高德地图、OCR 识别等在内的 30+ 核心服务,让开发者在几分钟内,就能为智能体赋能真实的商业场景。

蚂蚁百宝箱3分钟上手MCP:6步轻松构建智能体应用并发布小程序


本文将手把手教你,如何用 6 个步骤、3 分钟时间,快速搭建一个基于 Qwen3 + MCP 的 AI 智能体应用,并发布为支付宝小程序。

本文以“全球智能导游助手”为案例,不仅能提供旅行建议,还能优雅地收取用户打赏,实现服务与变现闭环。

让我们开始吧——一起来打造一个会说外语、能陪出行、还能帮你赚钱的智能体!


构建智能体应用实践操作教程

在这里插入图片描述


第一步:登录并进入百宝箱MCP专区

首先,打开蚂蚁百宝箱官网,使用支付宝账号登录平台,即可立即体验开发流程。

蚂蚁百宝箱3分钟上手MCP:6步轻松构建智能体应用并发布小程序

登录成功后,首页即可看到全新上线的MCP专区模块:

蚂蚁百宝箱3分钟上手MCP:6步轻松构建智能体应用并发布小程序

点击进入MCP专区,可以浏览目前已经开放的各类MCP服务,包括支付、地图导航、无影云桌面等,丰富多样,可按需接入:

蚂蚁百宝箱3分钟上手MCP:6步轻松构建智能体应用并发布小程序


第二步:创建智能体应用

在MCP专区中,我们将创建一个属于自己的MCP智能体应用。

2.1 新建应用

点击右上角的「新建应用」按钮,依次完成以下设置:

  • 应用类型:选择「对话型」应用;
  • 构建方式:选择「简单构建」;
  • 应用名称与功能介绍:填写符合本次案例的应用名称和功能描述,如“全球智能导游助手”。

蚂蚁百宝箱3分钟上手MCP:6步轻松构建智能体应用并发布小程序

我这里创建一个 全球智能导游助手
蚂蚁百宝箱3分钟上手MCP:6步轻松构建Qwen3智能体应用并发布小程序

2.2 选择大模型

在应用配置页面右上角,选择推荐的大模型版本。
建议选择:

  • Qwen3
  • 或者 DeepSeek-V3系列

两者都适配良好,支持高效调用MCP服务。

蚂蚁百宝箱3分钟上手MCP:6步轻松构建Qwen3智能体应用并发布小程序


第三步:添加插件

应用基本框架搭建完成后,我们需要为智能体添加核心收小费能力——MCP服务插件。

3.1 添加支付宝 MCP 插件

在应用编辑界面,找到左侧菜单栏的「知识&技能」板块,点击其中的「插件」,然后点击右上角的 「+」 按钮添加新插件。

蚂蚁百宝箱3分钟上手MCP:6步轻松构建智能体应用并发布小程序

3.2 选择并配置插件

在弹出的插件商店界面中,切换到「MCP插件」专区,找到【支付宝 MCP Server(体验版)】插件。
点击展开可以查看详细功能,确认无误后,点击右侧的「添加」按钮,完成插件接入。

蚂蚁百宝箱3分钟上手MCP:6步轻松构建智能体应用并发布小程序

📌 注意事项:
当前接入的 支付宝MCP服务(体验版) 仅用于测试体验。绑定的是测试商户账号,所有支付订单都会付款至测试账户,并在次日原路自动退款,无法转入创作者个人账户,也不支持提现。请勿用于正式生产环境!

蚂蚁百宝箱3分钟上手MCP:6步轻松构建智能体应用并发布小程序

至此,支付宝MCP插件已经成功添加,下一步,我们将配置角色与指令,让智能体真正能够调用MCP服务执行任务!


第四步:创建角色与指令

为了让智能体能正确调用MCP插件并完成特定任务,我们需要为它配置角色与指令

首先,在应用配置界面,点击「角色与指令」模块,选择官方提供的提示词模版,快速生成基础角色设定。

蚂蚁百宝箱3分钟上手MCP:6步轻松构建Qwen3智能体应用并发布小程序

选择官方模板的具体操作步骤如下图所示:

蚂蚁百宝箱3分钟上手MCP:6步轻松构建Qwen3智能体应用并发布小程序

如果想进一步提升智能体的表现效果,可以使用AI助手对提示词进行优化调整(此步骤可选,但推荐进行微调,以提升应用体验)。

蚂蚁百宝箱3分钟上手MCP:6步轻松构建Qwen3智能体应用并发布小程序

当然,也可以根据自己的业务需求,自定义提示词指令。
本次案例中,我基于官方模板进行了微调,创建了一个专注于全球智能导游助手的小助手角色。

蚂蚁百宝箱3分钟上手MCP:6步轻松构建Qwen3智能体应用并发布小程序

角色与指令设置完成后,接下来我们发布一下智能体应用,就可以在手机上体验会收小费的智能体啦

第五步:发布上架

点击应用界面右上角的「发布」按钮,进入发布流程。

蚂蚁百宝箱3分钟上手MCP:6步轻松构建Qwen3智能体应用并发布小程序

在发布页面,需要完成以下操作:

  • 预览应用配置;
  • 勾选同意平台协议;
  • 确认无误后,点击发布按钮。

蚂蚁百宝箱3分钟上手MCP:6步轻松构建Qwen3智能体应用并发布小程序

确认发布后,点击「上架」按钮,即可将应用上线到小程序平台,供更多用户体验!

蚂蚁百宝箱3分钟上手MCP:6步轻松构建Qwen3智能体应用并发布小程序

上线后的实际效果如下图所示,应用已经可以通过小程序访问:

蚂蚁百宝箱3分钟上手MCP:6步轻松构建Qwen3智能体应用并发布小程序


第六步:手机端体验智能体应用小程序

上架完成后,我们可以在手机端实际体验发布效果。

打开支付宝扫一扫右侧小程序,即可进入自己的应用。

蚂蚁百宝箱3分钟上手MCP:6步轻松构建Qwen3智能体应用并发布小程序

提交生成指令后,智能体顺利响应,并提醒下一次提问需要付费。

蚂蚁百宝箱3分钟上手MCP:6步轻松构建Qwen3智能体应用并发布小程序

在后续使用过程中,如果没有支付,回复一句支付,会继续提醒支付未完成,会继续弹出付费按钮提示,点击立即支付后,系统会跳转至测试支付环境,完成支付流程模拟。


多语言支持测试

为了验证多语言能力,这里准备了 6 种不同语言的提示词进行测试:

蚂蚁百宝箱3分钟上手MCP:6步轻松构建Qwen3智能体应用并发布小程序

实际生成效果如下图所示,智能体不仅能准确理解和回应各语种用户的请求,还能自然衔接服务推荐与小费收取的提示:

蚂蚁百宝箱3分钟上手MCP:6步轻松构建Qwen3智能体应用并发布小程序

从结果来看,基于 Qwen3 的多语言能力,智能体可以轻松适应全球用户,实现真正意义上的多语种交互、智能导览与支付闭环。无论用户来自哪里,都能获得个性化的旅游推荐体验,并顺畅完成小费支付。


百宝箱支持的MCP服务模式

目前,蚂蚁百宝箱提供两种MCP服务模式,适配不同开发需求:

  1. 全周期托管服务
    开发者无需关心资源配置、部署调度、工程运维等细节,
    1分钟即可快速搭建具备MCP能力的智能体,实现真正的“开箱即用”。

  2. 快速部署服务
    支持智能体在运行时按需动态加载新的MCP服务,如高德导航API、无影云桌面API等,
    按需组合、即插即用,显著降低开发与维护成本。

同时,平台内置完善的监控系统,能够实时追踪:

  • API调用次数
  • Token消耗情况
  • 响应时长等关键指标

帮助开发者全流程掌握应用状态与异常问题,保障服务稳定运行。


参考资料


总结

通过以上 6 步,我们已经成功在蚂蚁百宝箱中构建并发布了一个基于 Qwen3 + 支付宝 MCP 的智能体应用。从智能体创建到插件配置、再到小程序上线,整个过程高效流畅,大幅降低了 AI 应用开发和变现的门槛。

需要特别提醒的是:
目前蚂蚁百宝箱的 MCP 服务仍处于抢先体验阶段,支付与调用功能仅限开发测试使用,暂不支持正式商用部署。所有支付订单均在测试环境中处理,并将在次日原路退款,请勿用于真实交易或商用上线。

实际体验中可以明显感受到平台“所见即所得”的开发效率,特别适合进行 AI 应用原型设计、功能验证与玩法探索。

如果你也对“会说话、能推荐、还能收钱”的智能体感兴趣,不妨动手试一试,解锁更多智能创意!

立即体验蚂蚁百宝箱 MCP 应用 >>https://tbox.alipay.com

<think>嗯,用户想查询Qwen3 MCP本地部署的配置。首先,我需要回忆一下之前提供的引用内容,看看有没有相关的信息。引用[1]提到了如何使用Ollama在本地运行Qwen3支持MCP和工具使用,里面有具体的代码示例,配置骤,这可能对用户有帮助。引用[2]和[3]也提到了本地部署的方法,比如使用Ollama、vLLM等工具。所以应该结合这些信息来回答。 用户的问题是关于Qwen3 MCP的本地部署配置,需要明确MCP是什么。根据引用里的描述,MCP可能是指某种服务或协议,比如在工具配置里提到的&#39;mcpServers&#39;,有time和fetch的命令,可能和获取时间或数据有关。但用户可能更关注如何配置环境来支持MCP功能。 首先,我需要整理部署的骤。根据引用[1],骤包括配置本地模型、定义工具(包括MCP)、初始化助手、发送消息等。所以回答的结构应该分骤说明,比如环境准备、模型配置、工具集成、运行验证等。 然后,要确保LaTeX格式正确,比如行内公式用$...$,独立公式用$$...$$。不过这个问题可能涉及代码较多,数学公式可能较少,但如果有参数或变量,需要正确应用格式。 还需要生成相关问题,可能涉及优化部署、验证方法、与其他工具的比较等。要确保问题相关且有用。 另外,用户提到的引用需要正确标注。例如,引用[1]中的代码示例,引用[2]中的部署工具,引用[3]中的模型版本和特性。需要确认这些信息是否准确对应到回答中。 可能需要注意用户的环境,比如是否需要安装Ollama,如何下载模型,配置API地址等。在引用[2]中提到了使用Ollama安装Qwen3-8B模型,用户可能需要先完成这些前置骤。此外,引用[3]提到使用vLLM进行Docker部署,可能可以作为另一种部署方式的参考,但用户当前的问题更关注MCP的配置,所以可能以Ollama为主。 还需要检查代码是否正确,比如Python代码中的缩进、参数设置是否正确。例如,在配置llm_cfg时,model_server的地址是否正确,api_key是否为&#39;EMPTY&#39;。工具列表中的结构是否正确,比如是否包含mcpServers和code_interpreter。 最后,确保回答使用中文,结构清晰,分骤说明,附上相关问题和引用标注。</think>### Qwen3 MCP本地部署配置详解 Qwen3 MCP本地部署的核心是通过Ollama框架实现模型服务调用,结合MCP服务扩展工具能力。以下是具体配置流程: #### 一、基础环境准备 1. 安装Ollama服务(需v0.1.34+) ```bash curl -fsSL https://ollama.com/install.sh | sh ``` 2. 下载Qwen3模型(以8B为例): ```bash ollama run qwen3:8b ``` #### 二、模型服务配置 ```python llm_cfg = { &#39;model&#39;: &#39;qwen3&#39;, # 模型标识符 &#39;model_server&#39;: &#39;http://localhost:11434/v1&#39;, # Ollama默认API地址 &#39;api_key&#39;: &#39;EMPTY&#39;, # 本地部署无需验证密钥 &#39;temperature&#39;: 0.7 # 温度参数控制生成随机性 } ``` > 注:建议显存≥16GB,内存≥32GB以保证流畅运行[^2] #### 三、MCP工具集成 ```python tools = [ { # MCP服务定义 &#39;mcpServers&#39;: { &#39;time&#39;: { &#39;command&#39;: &#39;uvx&#39;, &#39;args&#39;: [&#39;mcp-server-time&#39;, &#39;--local-timezone=Asia/Shanghai&#39;] }, &#39;fetch&#39;: { &#39;command&#39;: &#39;uvx&#39;, &#39;args&#39;: [&#39;mcp-server-fetch&#39;] } } }, &#39;code_interpreter&#39; # 代码解释器工具 ] ``` 该配置实现: - 时区时间服务:通过`mcp-server-time`获取本地时间 - 数据获取服务:通过`mcp-server-fetch`执行数据抓取 - 代码解释器:支持Python代码执行[^1] #### 四、助手初始化与调用 ```python bot = Assistant(llm=llm_cfg, function_list=tools) messages = [{ &#39;role&#39;: &#39;user&#39;, &#39;content&#39;: &#39;查询当前上海时间获取最新Qwen技术文档&#39; }] for response in bot.run(messages): print(response[-1][&#39;content&#39;]) ``` 典型输出结构: ``` 当前上海时间:2024-06-20 15:30:00 CST 已获取最新文档:https://qwenlm.github.io/blog/... ``` #### 五、验证部署 1. 检查Ollama服务状态: ```bash curl http://localhost:11434/api/tags ``` 2. 测试MCP服务响应: ```python import requests response = requests.post( &#39;http://localhost:11434/v1/chat/completions&#39;, headers={&#39;Authorization&#39;: &#39;Bearer EMPTY&#39;}, json={&#39;model&#39;: &#39;qwen3&#39;, &#39;messages&#39;: [{&#39;role&#39;:&#39;user&#39;,&#39;content&#39;:&#39;当前时间&#39;}]} ) ```
评论 108
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

猫头虎

一分也是爱,打赏博主成就未来!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值