如何解决 AttributeError: ‘Qwen2ForCausalLM‘ object has no attribute ‘chat‘ 问题
前言
在使用 Qwen2 模型进行对话生成或互动开发时,很多开发者都遇到过这样的错误:
AttributeError: 'Qwen2ForCausalLM' object has no attribute 'chat'
本文将详细分析这个错误的成因,并提供一套全面的解决方案,帮助你一步步打通 Qwen2 模型开发的全路。
文章目录
作者简介
猫头虎是谁?
大家好,我是 猫头虎,猫头虎技术团队创始人,也被大家称为猫哥。我目前是COC北京城市开发者社区主理人、COC西安城市开发者社区主理人,以及云原生开发者社区主理人,在多个技术领域如云原生、前端、后端、运维和AI都具备丰富经验。
我的博客内容涵盖广泛,主要分享技术教程、Bug解决方案、开发工具使用方法、前沿科技资讯、产品评测、产品使用体验,以及产品优缺点分析、横向对比、技术沙龙参会体验等。我的分享聚焦于云服务产品评测、AI产品对比、开发板性能测试和技术报告。
目前,我活跃在CSDN、51CTO、腾讯云、阿里云开发者社区、知乎、微信公众号、视频号、抖音、B站、小红书等平台,全网粉丝已超过30万。我所有平台的IP名称统一为猫头虎或猫头虎技术团队。
我希望通过我的分享,帮助大家更好地掌握和使用各种技术产品,提升开发效率与体验。
作者名片 ✍️
- 博主:猫头虎
- 全网搜索关键词:猫头虎
- 作者微信号:Libin9iOak
- 作者公众号:猫头虎技术团队
- 更新日期:2025年06月21日
- 🌟 欢迎来到猫头虎的博客 — 探索技术的无限可能!
加入我们AI共创团队 🌐
- 猫头虎AI共创社群矩阵列表:
加入猫头虎的共创圈,一起探索编程世界的无限可能! 🚀
部分专栏链接
:
🔗 精选专栏:
- 《面试题大全》 — 面试准备的宝典!
- 《IDEA开发秘籍》 — 提升你的IDEA技能!
- 《100天精通鸿蒙》 — 从Web/安卓到鸿蒙大师!
- 《100天精通Golang(基础入门篇)》 — 踏入Go语言世界的第一步!
正文
一、错误分析
Qwen2 是一款由 Alibaba DAMO Academy 发布的强大的语言生成模型,支持 Chat 形式互动。然而,它通过 transformers.AutoModelForCausalLM
进行加载时,它实际继承的是 Qwen2ForCausalLM
,而后者并没有内置的 chat()
方法。
也即,该错误是因为您试图直接调用一个未定义的方法。
二、解决思路
您必须自行定义一个同类型的 chat()
方法,并将它加载到模型对象上。核心思路分为:
- 构造 prompt:根据历史对话 + 当前问题
- 进行 generate 生成:通过
model.generate()
- 编码解析:将模型输出 ID 转为文本
三、实现代码
1. 定义 chat()
方法
import torch
def chat(model, tokenizer, query, history=[], **kwargs):
# 1. 构建对话 prompt
input_ids = tokenizer.apply_chat_template(
history + [{"role": "user", "content": query}],
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
# 2. 生成输出
output_ids = model.generate(
input_ids=input_ids,
max_new_tokens=512,
do_sample=True,
temperature=0.8,
top_p=0.9,
**kwargs
)
# 3. 转为文本
generated_ids = output_ids[0][input_ids.shape[-1]:]
response = tokenizer.decode(generated_ids, skip_special_tokens=True)
return response
2. 绑定到类
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "Qwen/Qwen2-0.5B" # 按需选择
model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
# 绑定 chat 方法
model.chat = lambda m, t, q, h=[]: chat(m, t, q, h)
3. 使用
response = model.chat(model, tokenizer, "你好,简单介绍一下Qwen2模型。")
print(response)
四、频繁问题配套解量
1. tokenizer.apply_chat_template
是啥?
Qwen2 配套 tokenizer 支持 chat template,用来构造符合模型训练时样式的 prompt,避免 prompt 不规范导致生成错误。
2. 如何支持多轮历史对话?
将历史以如下格式传入 chat()
方法:
history = [
{"role": "user", "content": "你是谁?"},
{"role": "assistant", "content": "我是一个大模型AI。"},
{"role": "user", "content": "能做啥?"},
]
response = chat(model, tokenizer, "能写代码吗?", history)
五、结论
错误 AttributeError: 'Qwen2ForCausalLM' object has no attribute 'chat'
本质是因为 Qwen2 模型本身存在规范化输入要求,但并未内置对话中的 chat()
方法。
通过手动定义该方法,并绑定到 model 对象上,可以完美解决该问题,为后续培养自己的 Chat Agent 应用打下基础。
粉丝福利
👉 更多信息:有任何疑问或者需要进一步探讨的内容,欢迎点击文末名片获取更多信息。我是猫头虎博主,期待与您的交流! 🦉💬
联系我与版权声明 📩
- 联系方式:
- 微信: Libin9iOak
- 公众号: 猫头虎技术团队
- 版权声明:
本文为原创文章,版权归作者所有。未经许可,禁止转载。更多内容请访问猫头虎的博客首页。
点击✨⬇️下方名片
⬇️✨,加入猫头虎AI共创社群矩阵。一起探索科技的未来,共同成长。🚀