题目描述
卡拉兹( Calatz)猜想:
对任何一个自然数n,如果它是偶数,那么把它砍掉一半;如果它是奇数,那么把(3n+1)砍掉一半。这样一直反复砍下去,最后一定在某一步得到n=1。卡拉兹在1950年的世界数学家大会上公布了这个猜想,传说当时耶鲁大学师生齐动员,拼命想证明这个貌似很荒唐......
此处并非要证明卡拉兹猜想,而是对给定的任一不超过1000的正整数n,简单地数一下,需要多少步才能得到n=1?
输入格式
每个测试输入包含1个测试用例,即给出自然数n的值。
输出格式
输出从n计算到1需要的步数。
输入样例
3
输出样例
5
思路
读入题目给出的n,之后用 while循环语句反复判断n是否为1:
①如果n为1,则退出循环。
②如果n不为1,则判断n是否为偶数,如果是偶数,则令m除以2:否则令n为(31)/2。之后令计数器step加1。
这样当退出循环时,step的值就是需要的答案。
代码实现 :
#include<cstdio>
int main(){
int n,stept = 0;
scanf("%d",&n);
while(n != 1){
if(n%2==0)
n=n/2;
else n=(n*3+1)/2;
stept++;
}
printf("%d\n",stept);
return 0;
}