害死人不偿命的(3n+1)猜想

题目描述

卡拉兹( Calatz)猜想:

对任何一个自然数n,如果它是偶数,那么把它砍掉一半;如果它是奇数,那么把(3n+1)砍掉一半。这样一直反复砍下去,最后一定在某一步得到n=1。卡拉兹在1950年的世界数学家大会上公布了这个猜想,传说当时耶鲁大学师生齐动员,拼命想证明这个貌似很荒唐......

此处并非要证明卡拉兹猜想,而是对给定的任一不超过1000的正整数n,简单地数一下,需要多少步才能得到n=1?

输入格式

每个测试输入包含1个测试用例,即给出自然数n的值。

输出格式

输出从n计算到1需要的步数。

输入样例

3

输出样例

5

思路

读入题目给出的n,之后用 while循环语句反复判断n是否为1:

①如果n为1,则退出循环。

②如果n不为1,则判断n是否为偶数,如果是偶数,则令m除以2:否则令n为(31)/2。之后令计数器step加1。

这样当退出循环时,step的值就是需要的答案。

 

代码实现 :

#include<cstdio> 
int main(){
	int n,stept = 0;
	scanf("%d",&n);
	while(n != 1){
		if(n%2==0)
			n=n/2;
		else n=(n*3+1)/2;
		stept++;
	}
	printf("%d\n",stept);
	return 0;
}

运行结果:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值