lora:low-rank adaption of large language models

LoRA是一种针对大语言模型的低秩适应方法,通过低秩矩阵分解减少微调过程中的参数量。它在预训练模型权重冻结的基础上,仅优化新增的低秩分解矩阵,有效降低计算开销,适用于Transformer模型的各线性层。实验表明,LoRA在保持性能的同时,减少了参数数量,验证了模型适应过程中参数变化的低秩假设。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值