ENet: A deep neural network architecture for real-time semantic segmentation

ENet是一种深度神经网络架构,旨在实现实时语义分割,相比同类模型速度提升18倍,FLOPs减少75倍,参数量降低79倍。通过减少下采样比例至8倍,保留更多细节信息;采用3x3卷积和最大池化并行,加速信息处理;使用PReLU和BN代替ReLU,提高模型精度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ENet: A deep neural network architecture for real-time semantic segmentation

Abstract: 18x faster,75x less flops,79x less param

卷积Param: 0.37m

模型参数: 0.7m

卷积参数和模型参数是不一样的

1.Introduction

为了减少内核调用和唇齿操作,作者的网络架构没有使用bias,只有weights

1). Feature map resilution

下采样有两个缺点,降低特征图分辨率丢失细节信息,语义分割需要输出和原图相同的分辨率,然而在下采样特征图上运行的滤波器有一个更大的感受野,使他们能够收集更多的信息,fcn使用32倍下采样,作者的enet只使用了8倍的下采样。

2). Early downsampling

视觉信息是高度空间冗余,renet是自动去调节整个信息流的冗余流动。最初的网络层不应该有助于分类,相反作为很好的特征处理器和图像预处理

3). Decoder size

Encoder和decoder不是对称的,encoder主要进行信息处理和过滤,是主要结构,decoder负责上采样的输出,并惊醒细节微调。

4). Nonlinear operations

一般网络架构都会在cnn之前进行relu和bn,但是作者发现使用relu降低了模型精度,作者认为relu没有起作用是网络结构层深度的问题,resnet有上百层网络,而enet较少的网络需要快速过滤信息,所以使用prelu和bn。

5). Information-preserving dimensionality changes

在初始化阶段,作者采用3x3 CNN(stride 2)和maxpool并行,之后在concatenate特征图,10倍加速

6). Factorizing filters

Nn的卷积被1xn和nx1大体

7). Dilated conv

交叉使用

8). Regularization

Spatial dropout

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值