1、什么是偏导数
偏导数就是关于多元函数中某一个变量的导数,而把其他变量固定下来。比如说有一个函数 z = f(x,y),当我们求关于 x 的偏导数的时候,就是把 y 当作常数,对 x 求导。那这样做的意义是什么呢?为什么我们需要这样的概念呢?
首先,导数在单变量函数中的意义是函数在某一点的切线斜率,也就是函数在该点的变化率。那么偏导数是不是也是类似的意思呢?比如说,在三维空间里,函数 z = f(x,y) 的图像是一个曲面,当我们求关于 x 的偏导数时,是不是相当于在 x 方向上切这个曲面得到的曲线的切线斜率。这时候 y 被固定下来,所以应该是在某个特定的 y 值下,沿着 x 方向的变化率。
也就是说,偏导数用来研究多元函数在各个自变量方向上的变化情况的。比如说,在物理学中,有温度分布 T(x,y,z,t),如果我们想知道温度在 x 方向上的变化快慢,这时候就需要对 x 求偏导数,而保持其他变量不变。这样就能单独分析每个变量对函数值的影响,而不用考虑其他变量的变化。
那么为什么不能像单变量那样直接用导数呢?是不是因为多元函数有多个变量,每个变量都可能独立变化,所以必须分开来看?这时候偏导数就提供了一种逐个变量分析变化率的方法。比如说,在经济学中,一个产品的需求量可能取决于自身价格、潜在客户收入、竞品价格、品牌溢价、市场饱和度、质量与功能等多个因素,如果我们要看自身价格变化对需求量的影响,这时候就要保持其他变量不变,求关于自身价格的偏导数,这就是需求的价格弹性之类的概念。
那这样的话,偏导数的意义就在于,它允许我们在多变量环境中单独考察每个变量对函数的影响,这在很多实际问题中都是必要的,因为变量之间可能是相互独立的,或者我们在控制实验时只改变一个变量而保持其他变量不变,这时候偏导数就反映了这种控制下的变化率。
比如说,函数 f(x,y) = x² + xy + y²,那么关于 x 的偏导数就是把 y 被当作常数,然后对每个项分别求导:
对 x² 求导,结果为 2x |
对 xy 求导,由于 y 是常数,结果为 y |
对 y² 求导,由于 y 是常数,结果为 0 |
最终结果:。
这就代表了在某个固定的 y 值下,x 变化时函数 f 的变化率。比如在点 (1,2),偏导数就是 2*1 + 2 = 4,这时候如果 x 增加一个很小的量,比如说 Δx,那么 f 的变化量大约是 4Δx,而 y 保持不变。同样,关于 y 的偏导数是 x + 2y,在点 (1,2) 就是1 + 4 = 5,这说明 y 方向的变化率更大。
那这样的话,偏导数确实能够告诉我们每个变量单独变化时函数的变化情况,这在优化问题中可能很有用,比如梯度下降法就需要知道各个方向上的偏导数,来找到函数的最小值点。或者,在工程中,设计一个曲面的时候,需要考虑各个方向上的斜率,以确保结构的稳定性等。
不过,可能还有一些需要注意的地方,比如偏导数只考虑了单一变量的变化,而实际情况下变量之间可能存在交互作用,这时候可能需要更高阶的偏导数或者全导数来综合考虑多个变量的变化影响。比如混合偏导数,像是先对 x 求偏导再对 y 求偏导,或者反过来,这可能涉及到函数的曲率或者其他更复杂的特性。
偏导数的存在并不意味着函数在该点可微,比如,即使所有的偏导数都存在,函数也可能不可微,因为可微性需要更强的条件,即函数在某个点附近的变化可以用线性近似很好地表示,而不仅仅是各个方向上的偏导数存在。所以偏导数的存在只是可微的必要条件,而不是充分条件,这点需要注意。
2、偏导数的总结
它允许我们在多变量函数中单独考虑每一个变量对函数值的影响,从而分析函数在各个方向上的变化率。这对于理解函数的局部性质、优化问题、物理量的变化分析等方面都是非常重要的工具。
在热传导问题中,温度场随着空间和时间的变化而变化,对时间的偏导数表示温度随时间的变化率,而对空间的偏导数则表示温度梯度,即热量流动的驱动力。这时候,各个方向上的偏导数结合起来,就可以得到温度场的全面变化情况,进而应用热传导方程来解决问题。
或者,在经济学中的边际分析,比如生产函数中,劳动力Labour 和资本Capital 的投入对产出Output 的影响,可以通过对 L 和 C 求偏导数得到劳动力的边际产出和资本的边际产出,从而帮助决定最优的资源配置。
3、偏导数的几何意义
比如,在三维空间中,函数 z = f(x,y) 在点 (x0,y0) 处关于 x 的偏导数,对应的是该点沿着 x 方向的切线斜率,也就是在 y = y0 这个平面上,曲线 z = f(x,y0) 的切线斜率。
同样,关于 y 的偏导数对应的是在 x = x0 平面上曲线的切线斜率。这两个切线可能不在同一个平面内,但共同构成了切平面,而梯度向量(由两个偏导数组成)则指向函数增长最快的方向。
这样看来,偏导数不仅是单独方向上的变化率,它们的组合还能给出更全面的信息,比如梯度的方向和大小,这对于优化问题尤其重要,比如寻找函数的极值点,梯度下降法等都需要计算各个方向的偏导数。
4、偏导数的计算注意
在求关于 x 的偏导数时,错误地把 y 当作变量来处理,或者忘记应用链式法则,尤其是在复合函数的情况下。比如,如果有函数 f(x,y) = x²y + sin(y),那么关于 x 的偏导数计算:
项 x²y | 将 y 视为常数,对 x 求导,结果为 2x⋅y = 2xy |
项 sin(y) | 由于 y 是常数,对 x 求导结果为 0 |
最终结果:。
关于 y 的偏导数计算:
项 x²y | 将 x 视为常数,对 y 求导,结果为 x²⋅1 = x² |
项 sin(y) | 对 y 求导结果为 cos(y) |
最终结果:。
附录
1)什么是梯度下降
梯度下降是迭代法的一种,可以用于求解最小二乘问题(线性和非线性都可以)。在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法。
在求解损失函数的最小值时,可以通过梯度下降法来一步步的迭代求解,得到最小化的损失函数和模型参数值。反过来,如果我们需要求解损失函数的最大值,这时就需要用梯度上升法来迭代了。
在机器学习中,基于基本的梯度下降法发展了两种梯度下降方法,分别为随机梯度下降法和批量梯度下降法。
2)梯度下降简介
梯度:对于可微的数量场 f(x,y,z),以为分量的向量场称为 f 的梯度或斜量。
梯度下降法(Gradient Descent)是一个一阶最优化算法,常用于机器学习和人工智能当中用来递归性地逼近最小偏差模型。
3)应用举例
举一个非常简单的例子,如求函数的最小值。
利用梯度下降的方法解题步骤如下:
①求梯度,
②向梯度相反的方向移动 x,如下,其中,
为步长。如果步长足够小,则可以保证每一次迭代都在减小,但可能导致收敛太慢,如果步长太大,则不能保证每一次迭代都减少,也不能保证收敛。
③循环迭代步骤2,直到 x 的值变化到使得 f(x) 在两次迭代之间的差值足够小,比如0.00000001,也就是说,直到两次迭代计算出来的 f(x) 基本没有变化,则说明此时 f(x) 已经达到局部最小值了。
④此时,输出 x,这个 x 就是使得函数 f(x) 最小时的 x 的取值。
⑤MATLAB代码
% 设置步长为0.1,f_change为改变前后的y值变化,仅设置了一个退出条件。
syms x;f=x^2;
step=0.1;x=2;k=0; %设置步长,初始值,迭代记录数
f_change=x^2; %初始化差值
f_current=x^2; %计算当前函数值
ezplot(@(x,f)f-x.^2) %画出函数图像
axis([-2,2,-0.2,3]) %固定坐标轴
hold on
while f_change>0.000000001 %设置条件,两次计算的值之差小于某个数,跳出循环
x=x-step*2*x; %-2*x为梯度反方向,step为步长,!最速下降法!
f_change = f_current - x^2; %计算两次函数值之差
f_current = x^2 ; %重新计算当前的函数值
plot(x,f_current,'ro','markersize',7) %标记当前的位置
drawnow;pause(0.2);
k=k+1;
end
hold off
fprintf('在迭代%d次后找到函数最小值为%e,对应的x值为%e\n',k,x^2,x)
如果对你有帮助,请动动发财的小手点个赞让我知道哦。