AI进展不止于基准:深度解析Grok 3的局限

基准测试长期以来一直是AI评估的基石,但任何认真的AI科学家都知道它们是可以被“游戏化”的。

在这里插入图片描述

我曾经详细写过这个问题,甚至LMsys也不得不调整其盲测格式——将Grok 3用不同的标签代替,而不仅仅是隐藏品牌——以减少品牌偏见。

高能力AI,尤其是像GPT-4级别的模型,或那些依赖测试时计算的模型,其问题不仅仅是原始的性能指标。没有任何基准测试能够完全捕捉到两个根本性挑战。

在这里插入图片描述

第一个主要问题是当前模型无法进行多层次的战略推理。

如果我们将任何复杂问题拆解成不同的层次——扫描、优化与计划、以及实施——任何一个阶段的错误都会在最终输出中引发灾难性后果。

测试时的计算无法解决这个问题,因为这个问题嵌入在这些模型如何按顺序处理信息的方式中。

第二个问题是理解新知识。

大模型的标准知识差距通常在6到8个月之间。

即使通过最新的信息进行微调,依然有证据表明新引入的事实与预训练期间建立的基础知识之间可能会出现矛盾。

这里的核心问题是,这些模型并不按照固定的逻辑原则运作;它们的“逻辑”由在预训练期间产生的权重决定。

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

李孟聊人工智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值