集成电路学习:什么是SVM支持向量机

SVM:支持向量机

       SVM,即支持向量机(Support Vector Machine),是一种常用的机器学习算法,特别适用于分类和回归问题。以下是对SVM的详细解析:

一、SVM的基本原理

       SVM的基本思想是在特征空间中寻找一个最优的超平面,使得不同类别的样本能够被最大化地分开。这个最优超平面由距离它最近的几个样本点(即支持向量)决定,这些支持向量对于确定超平面的位置至关重要。通过最大化支持向量与超平面之间的距离(即间隔),SVM能够找到具有最佳泛化能力的分类边界。

二、SVM的核函数与非线性分类

       对于非线性分类问题,SVM通过引入核函数将数据从原始特征空间映射到高维特征空间,使得在高维空间中样本变得线性可分或更容易分开。核函数的作用是计算两个样本点在高维特征空间中的内积,而无需显式地进行特征向量的计算。常见的核函数包括线性核、多项式核、径向基函数(RBF)核等。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

梦实学习室

强国有我,请您放心!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值