- 博客(728)
- 资源 (1)
- 收藏
- 关注

原创 集成电路学习:什么是ROS Core机器人操作系统核心
ROS是一个开源的机器人操作系统,其核心组件ROSCore包含roscore(启动核心节点)、参数服务器(全局键值存储)和主节点(管理通信)。ROS采用模块化设计,支持节点间通过话题(异步)和服务(同步)通信,提供多种编程语言接口及工具(如RViz)。其强大的社区生态和灵活的架构促进了机器人软件的开发与创新。
2025-08-10 19:47:40
526

原创 集成电路学习:什么是ROS机器人操作系统
ROS(机器人操作系统)是一个专为机器人开发设计的开源框架,由斯坦福大学发起,现由OpenRobotics维护。其核心特点包括分布式处理架构(节点间通过主题、服务和参数服务器通信)、模块化设计、多语言支持(Python/C++等)以及丰富的工具库(RViz、Catkin等)。ROS采用发布/订阅(Topics)和请求/响应(Services)机制实现节点通信,并支持全局参数配置。该系统已广泛应用于工业自动化、医疗辅助和教育科研等领域,显著提升了机器人开发的效率与灵活性,持续推动着机器人技术的创新发展。
2025-08-07 12:56:13
1068
原创 人工智能学习:什么是RNN模型
摘要: RNN(循环神经网络)是处理序列数据的神经网络,通过循环连接捕捉时间依赖关系,广泛应用于NLP、语音识别等领域。其核心是隐藏状态,按时间步更新并输出结果。RNN分为四种结构:NvsN(等长输入输出,如词性标注)、Nvs1(序列输入单输出,如情感分析)、1vsN(单输入序列输出,如文本生成)、NvsM(不等长序列,如机器翻译)。内部构造包括传统RNN、LSTM、GRU等变体,其中seq2seq(NvsM)结构应用最广。RNN通过序列关系处理连续性数据,适用于文本分类、翻译等任务。
2025-09-03 16:20:33
291
原创 人工智能学习:NLP的词性对照表
本文对比了jieba和HanLP中文分词工具的词性标注体系。jieba采用字母编码(如a表形容词、n表名词、v表动词),细分了形容词/名词/动词的子类(如nr表人名、vn表名动词)。HanLP则使用英文缩写(如NR表专有名词、VV表动词),并包含更多语言学分类(如DT限定词、OD次序词等)。两者都覆盖了基本词类,但HanLP的分类更细致,包含标点符号、外来词等特殊类别,且标注方式更接近英文词性标注惯例。
2025-09-03 16:20:08
23
原创 人工智能学习:文本张量表示
本文介绍了自然语言处理中的文本张量表示方法,主要包括one-hot编码、Word2Vec和词嵌入(WordEmbedding)三种技术。one-hot编码简单直观但存在高维稀疏问题;Word2Vec通过CBOW和Skip-gram两种模式训练词向量,能有效捕捉词语语义关系;词嵌入则是更广泛的概念,包括各种将词汇映射到低维空间的方法。文章详细阐述了各方法的原理、实现过程及优缺点,并提供了Python代码示例和可视化分析方法,为理解文本向量化技术提供了系统性的指导。
2025-09-02 11:37:48
458
原创 人工智能学习:NLP的文本特征处理
本文介绍了自然语言处理中两种重要的文本特征处理方法。n-gram特征通过组合相邻词语捕捉局部上下文信息,常用的bi-gram和tri-gram可有效表达词语关系。文本长度规范则通过截断或填充将文本统一为固定长度,满足深度学习模型的输入要求。这两种方法能增强模型性能,n-gram简单高效地提取语言特征,而长度规范则保证数据一致性和计算效率。文中还提供了Python代码示例,展示了n-gram特征提取和文本长度规范的具体实现方法。
2025-09-02 11:37:19
836
原创 人工智能学习:NLP文本处理的基本方法
本文介绍了中文自然语言处理中的三个基础任务:分词、命名实体识别(NER)和词性标注。分词是将连续字符序列切分成有意义的词序列的过程,文中重点介绍了Jieba分词工具的三种模式(精确、全模式和搜索引擎模式)及自定义词典功能。命名实体识别用于从文本中识别人名、地名等特定实体。词性标注则为每个词分配语法类别(如名词、动词)。文章通过具体代码示例展示了如何使用Jieba和HanLP等工具实现这些功能,并阐述了它们在文本预处理、信息抽取等NLP任务中的重要作用。这些基础技术为后续高级NLP任务提供了必要支持。
2025-09-01 11:46:50
713
原创 人工智能学习:什么是NLP自然语言处理
自然语言处理(Natural Language Processing, 简称NLP)是计算机科学与语言学中关注于计算机与人类语言间转换的领域,主要目标是让机器能够理解和生成自然语言,这样人们可以通过语言与计算机进行更自然的互动。对于自然语言来说,处理的数据主要就是人类的语言,例如:汉语、英语、法语等,该类型的数据不像我们前面接触过的结构化数据、或者图像数据可以很方便的进行数值化。语音识别:将语音信号转化为文本文本分析:从文本中提取有意义的信息,包括情感分析、主题提取等机器翻译。
2025-09-01 09:59:16
728
原创 人工智能学习:机器学习相关面试题(二)
本文摘要:文章主要介绍了机器学习中的关键概念和算法对比。有监督学习使用标记样本进行预测(如决策树、神经网络),而无监督学习则发现未标记数据的结构(如聚类)。重点对比了KMeans(聚类)和KNN(分类)算法,以及GBDT与XGBoost的区别(XGBoost在精度和效率上的优化)。同时解释了逻辑回归(LR)的原理、损失函数,以及二分类拓展到多分类的方法(OvO和OvR)。文章还涉及决策树构建要素(特征选择、剪枝)和数学基础(信息熵、Gini系数),强调数学推导在算法中的重要性。
2025-08-31 21:00:33
559
原创 人工智能学习:机器学习相关面试题(一)
般3000-10000的正样本需要5,000,000-100,000,000的负样本来学习,—— 人工蜂群算法 (ABC)”,“优化算法 —— 粒子群算法 (PSO)”。:在模型既定的情况下学习出对提高模型准确性最好的属性。意,L1没有选到的特征不代表不重要,原因是两个具有。训练数据的选取也是很关键的,,来寻找最少最优的稀疏特征项。L1范数的解通常是稀疏性的。将原有的特征重组成为包含信息更多的特征,样就将子集的选择看作是一个是一个优化问题。,挑选出那些对模型的训练有重要意义的属。
2025-08-31 20:52:44
586
原创 人工智能学习:Linux相关面试题
Linux常用命令包括find、df、tar、ps、top、netstat等。查看系统资源可使用top(内存)、df -h(磁盘)、iotop(IO读写)、netstat -tunlp(端口)、ps aux(进程)。文本处理示例:用awk查找空行行号、计算列总和;Shell脚本可检查文件存在性,并对无序数字列排序求和;查找含特定字符串的文件可用grep -r配合cut命令。这些命令覆盖了文件操作、系统监控和文本处理等常见Linux运维场景。(149字)
2025-08-30 22:55:15
288
原创 人工智能学习:Python相关面试题
本文总结了Python编程中的核心知识点,包括:1)Python作为动态类型解释型语言的特点及与其他语言的对比;2)列表与元组的区别;3)异常处理中else和finally的执行机制;4)Python特有的三元表达式语法;5)可变与不可变类型的区分;6)装饰器的作用与实现;7)__new__与__init__的区别;8)深浅拷贝机制;9)闭包与迭代器的实现;10)生成器的特性与应用场景;11)多线程与多进程的差异;12)Python内存管理机制;13)正则表达式匹配方法区别;14)lambda表达式及*ar
2025-08-30 22:43:01
1206
原创 集成电路学习:什么是TensorFlow
TensorFlow是由谷歌开发的开源机器学习框架,具有灵活、可移植、自动微分等核心特性,支持多种编程语言和硬件加速。广泛应用于深度学习、NLP、计算机视觉等领域,未来将持续优化性能、提升易用性并拓展生态系统。作为领先的AI工具,TensorFlow将持续推动机器学习技术发展。
2025-08-28 22:19:29
946
原创 智能机器人学习:智能机器人资料收集
【摘要】本文汇总了机器人技术领域的核心知识,涵盖ROS操作系统、ROSCore核心功能、人脸识别技术、环境感知传感器、深度学习等专题。文章重点介绍了机器人开发的基础工具ROS系统,以及实现智能感知的关键技术包括点云传感器和深度学习算法。内容源自CSDN技术博客,持续更新机器人/集成电路相关知识,旨在为相关领域学习者提供系统化的参考资料。同时推荐关注"深漂梦实"公众号,获取更多技术干货和行业资讯。(149字)
2025-08-28 22:12:37
1076
原创 集成电路学习:什么是YOLO一次性检测器
YOLO(You Only Look Once)是一种高效的目标检测算法,通过将检测任务转化为回归问题,使用单个卷积神经网络实现端到端训练。其特点包括快速检测速度、全局视野和抽象特征学习能力。YOLO系列经历了多个版本迭代(v1-v5),每代都在精度和速度上有所提升,如v3引入多尺度预测,v5采用PyTorch框架便于部署。算法核心包括特征提取、损失函数优化和非极大值抑制处理。YOLO在保持高精度的同时实现实时检测,在计算机视觉领域具有广泛应用前景。(148字)
2025-08-27 22:10:08
1018
原创 集成电路学习:什么是SSD单发多框检测器
SSD(单发多框检测器)是一种高效的目标检测算法,通过单一网络实现多尺度检测。其技术特点包括:1)单次前向传播完成检测;2)多特征层处理不同尺度对象;3)多框预测提高召回率。主要应用于自动驾驶、视频监控、工业检测和智能零售等领域。SSD优势在于高性能、灵活性强、易于实现,支持主流深度学习框架。未来发展趋势将聚焦精度提升、速度优化和泛化能力增强。随着技术进步,SSD的应用范围和性能将持续扩展提升。
2025-08-27 20:55:43
709
原创 集成电路学习:什么是ResNet深度残差网络
ResNet(深度残差网络)由微软亚洲研究院提出,通过引入残差连接和残差块结构,解决了深层神经网络的梯度消失问题。核心思想是让网络学习输入与输出之间的残差映射,而非直接映射,从而更易训练深层模型。ResNet在图像分类等任务中表现优异,其残差学习思想对深度学习发展产生深远影响。
2025-08-26 21:54:47
652
原创 集成电路学习:什么是MobileNet
MobileNet是谷歌开发的轻量级卷积神经网络,专为移动设备设计。其核心技术是深度可分离卷积,将标准卷积分解为深度卷积和逐点卷积,大幅降低计算量和参数量。通过宽度乘子和分辨率乘子可进一步调整模型大小。经历V1、V2、V3三次迭代,每版都优化了网络结构,如V2引入线性瓶颈和反向残差结构,V3结合神经架构搜索。MobileNet广泛应用于移动端图像识别、目标检测等场景,未来可能在模型压缩和优化方面继续发展。
2025-08-26 20:45:02
824
原创 集成电路学习:什么是ONNX开放神经网络交换
ONNX(开放神经网络交换)是一种跨平台的机器学习模型标准格式,由微软和Meta于2017年推出。它具有三大核心优势:支持PyTorch、TensorFlow等框架的模型互转;采用标准化张量数据结构;可对接多种优化推理引擎实现高效部署。ONNX模型由计算图、节点和张量三部分组成,广泛应用于模型转换、性能优化和多平台部署场景。开发者可通过pip快速安装,其开源特性将持续推动AI模型的互操作性和性能提升。
2025-08-25 22:08:19
866
原创 集成电路学习:什么是Caffe深度学习框架
Caffe是由伯克利AI研究团队开发的深度学习框架,专注于计算机视觉任务。它以C++为核心,提供Python/Matlab接口,具有模块化设计、GPU加速和预训练模型支持等特点。Caffe使用Protobuf定义模型结构,支持模型训练和推理,广泛应用于学术和工业领域。其活跃社区和持续更新使其成为深度学习领域的重要工具之一。
2025-08-25 21:58:46
1043
原创 通信工程学习:什么是SC交换连接
SC交换连接是ASON网络的核心连接类型,通过用户终端发起请求,由控制平面动态建立和维护连接。其特点包括自动化、灵活性和高效性,支持多种业务类型并具备高可靠性。该技术广泛应用于城域网、骨干网等场景,能根据业务需求动态优化网络资源,是未来光网络发展的重要方向。
2025-08-24 23:14:56
339
原创 集成电路学习:什么是PyTorch
PyTorch是一个由Facebook AI Research开发的开源机器学习库,以其灵活的动态计算图和易用性著称。它支持GPU加速,广泛应用于计算机视觉、自然语言处理、强化学习等领域。PyTorch 2.0引入的torch.compile进一步提升了性能。凭借丰富的生态系统和持续更新,PyTorch已成为深度学习研究和实践的重要工具。
2025-08-24 11:08:57
677
原创 集成电路学习:什么是Deep Learning深度学习
深度学习是人工智能的重要分支,通过多层神经网络从数据中学习特征,实现复杂任务处理。其核心包括神经网络结构(CNN、RNN等)、激活函数、损失函数和优化算法。深度学习已广泛应用于图像识别、自然语言处理、语音识别、医疗健康和自动驾驶等领域。随着技术进步,深度学习将持续推动AI向更智能化方向发展,在更多领域实现突破性应用。
2025-08-24 10:58:45
1106
原创 集成电路学习:什么是CNN卷积神经网络
CNN(卷积神经网络)是一种擅长处理图像数据的深度学习模型,通过卷积层提取局部特征,池化层降维,全连接层输出结果。其特点包括局部连接、权值共享和强大的特征提取能力,具有平移、缩放不变性。CNN广泛应用于图像识别、视频分析、NLP、生物信息学等领域,在医学影像、语音识别、游戏AI等方面表现突出。随着技术发展,CNN持续推动各领域的创新突破。
2025-08-23 13:49:13
732
原创 集成电路学习:什么是Random Forest随机森林
随机森林是一种集成学习方法,通过构建多个决策树并结合其预测结果来提高模型性能。其核心特点是随机特征选择和自助采样技术,能有效降低过拟合风险。优点包括高准确性、抗过拟合能力强、能处理高维数据和缺失值等,但也存在计算资源消耗大和模型复杂度高等缺点。适用于分类、回归及特征选择等任务,是一种灵活且强大的机器学习算法。
2025-08-23 13:40:01
458
原创 集成电路学习:什么是SVM支持向量机
支持向量机(SVM)是一种用于分类和回归的机器学习算法,通过寻找最优超平面实现数据分类。其核心在于最大化间隔,由支持向量决定分界面。SVM通过核函数处理非线性问题,具有高效、鲁棒、可解释性强等优点,但存在计算复杂度高、参数敏感等局限。该算法广泛应用于文本分类、图像识别、异常检测和生物信息学等领域。
2025-08-22 21:10:40
1025
原创 集成电路学习:什么是K-NN最近邻算法
K-NN(K-最近邻)是一种基本监督学习算法,通过计算新数据点与训练集中K个最近邻的距离进行分类或回归预测。其优点包括简单易懂、无需训练、适应多种数据类型;缺点涉及高计算复杂度、内存需求大和对噪声敏感。关键要素包括距离度量(如欧几里得/曼哈顿距离)、K值选择和特征缩放。适用于分类、回归、推荐系统和异常检测等场景,但需注意优化计算效率和特征处理。
2025-08-22 21:02:22
762
原创 集成电路学习:什么是Camera Calibration相机标定
相机标定是计算机视觉中建立相机成像模型的关键过程,通过确定内外参数实现二维图像与三维空间的准确映射。标定步骤包括准备标定物、采集图像、特征点提取、参数求解与优化等环节。常见方法有传统标定法(使用已知参照物)、主动视觉法(利用相机运动)和自标定法(基于场景几何)。OpenCV提供了相机标定的功能模块,可计算内参矩阵、外参矩阵和畸变参数。作为三维重建、物体识别等任务的基础,相机标定的精度直接影响后续视觉处理效果,其方法正随着技术发展而持续优化。
2025-08-21 22:54:56
1048
原创 集成电路学习:什么是Template Matching模版匹配
模板匹配是一种基础的图像识别技术,通过在目标图像中滑动比较预定义模板来寻找相似区域。其核心流程包括模板准备、滑动比较、相似度计算(如平方差、相关系数等方法)和最佳匹配定位。该技术计算高效,广泛应用于目标检测和跟踪,但受限于平移不变性,难以处理旋转或缩放的目标。为提高准确性,可采用多模板或结合其他图像处理算法。
2025-08-21 22:45:51
862
原创 集成电路学习:什么是Watershed Segmentation分水岭分割
分水岭分割是一种基于拓扑地形模拟的图像分割方法。该方法将图像亮度视为地形高度,通过模拟洪水漫延过程,在局部极小值点形成积水盆地,最终由分水岭边界完成图像分割。其优势在于能实现全局分割,获得精准的单像素边界;但对噪声敏感,易产生过分割。算法步骤包括预处理、梯度计算、种子点标记和区域融合。该方法广泛应用于医学影像、遥感和计算机视觉领域。需注意预处理和参数选择对分割效果的关键影响。
2025-08-20 20:31:38
707
原创 集成电路学习:什么是Canny边缘检测
Canny边缘检测是由John Canny提出的经典算法,通过高斯滤波降噪、计算梯度幅值方向、非极大值抑制、双阈值检测和边缘连接五个步骤,实现高精度边缘提取。其优势在于准确性高、错误率低、边缘定位精确且计算高效,广泛应用于物体检测、图像分割和视觉导航等领域,是计算机视觉中的重要基础算法。
2025-08-20 20:25:31
439
原创 集成电路学习:什么是Thresholding阈值处理
摘要:阈值处理是图像处理中的关键技术,主要用于图像二值化或分类。通过设定特定阈值,将像素分为不同类别(如黑白)。OpenCV提供多种阈值处理方法,包括二值化、反二值化等。其应用广泛,涵盖图像分割、边缘检测、OCR等多个领域。合理选择阈值和处理类型能有效提升图像分析效果。
2025-08-19 22:30:59
906
原创 集成电路学习:什么是Object Tracking目标跟踪
目标跟踪(ObjectTracking)是计算机视觉的重要研究方向,旨在通过算法在视频序列中持续定位目标对象。其技术流程包括目标初始化、特征提取、目标检测、数据关联和状态更新。主流方法涵盖基于区域、特征和深度学习(如Siamese网络)三类。当前面临外观变化、背景干扰和实时性等挑战,广泛应用于视频监控、自动驾驶、人机交互和运动分析等领域。未来研究将聚焦提升复杂场景下的算法鲁棒性和实时性。
2025-08-19 22:23:18
583
原创 集成电路学习:什么是Face Recognition人脸识别
人脸识别技术利用摄像机或摄像头采集含有人脸的图像或视频流,自动在图像中检测和跟踪人脸,进而对检测到的人脸进行身份识别。
2025-08-18 21:59:30
565
原创 集成电路学习:什么是Face Detection人脸检测
人脸检测是计算机视觉中识别定位人脸的关键技术,作为人脸识别等应用的基础。其核心技术包括特征提取和深度学习算法,特别是CNN方法表现突出。应用覆盖安防监控、身份认证、人机交互和商业分析等领域。当前仍面临光照、遮挡等技术挑战,未来需在提升精度的同时兼顾隐私保护。
2025-08-18 21:47:40
672
原创 集成电路学习:什么是ORB方向性FAST和旋转BRIEF
ORB算法是一种高效的特征描述方法,结合FAST角点检测和BRIEF描述子,具有旋转和尺度不变性。它通过计算关键点方向实现旋转不变性,利用图像金字塔处理尺度变化,并采用二进制描述符提升计算效率。ORB算法在实时跟踪、目标识别等计算机视觉任务中应用广泛,其快速性能使其特别适合实时应用。该算法在OpenCV等库中已有成熟实现,是计算机视觉领域的重要工具。
2025-08-17 14:51:10
1030
原创 集成电路学习:什么是SIFT尺度不变特征变换
SIFT(尺度不变特征变换)是David Lowe于1999年提出的图像特征提取算法,具有尺度、旋转和光照不变性。其核心步骤包括:构建高斯差分金字塔检测极值点,精确定位关键点,分配主方向生成描述子。SIFT特征具有独特性强、稳定性好等特点,广泛应用于图像匹配、物体识别、3D重建、视频分析等领域。该算法通过提取大量稳定的局部特征点,为计算机视觉任务提供了可靠的特征表达基础。
2025-08-17 14:27:43
589
原创 集成电路学习:什么是HOG方向梯度直方图
HOG(方向梯度直方图)是一种广泛应用于计算机视觉的特征描述符,通过统计图像局部区域的梯度方向直方图来描述目标形状。其提取过程包括图像预处理、梯度计算、单元格划分、直方图构建和归一化等步骤。HOG特征具有鲁棒性强、计算效率高、识别性能好等优点,广泛应用于行人检测、车辆识别、人脸识别、手势识别和医学图像分析等领域,是目标检测任务中的重要特征提取方法。
2025-08-16 10:53:50
958
原创 集成电路学习:什么是Haar Cascade Classifier Haar级联分类器
Haar级联分类器是基于Haar特征和级联结构的经典目标检测算法。它通过计算图像矩形区域的像素加权差提取Haar特征,利用级联分类器逐步筛选目标区域。检测过程包括图像预处理、特征提取和分类决策三步。该算法计算简单、速度快,在人脸检测等领域应用广泛。尽管深度学习兴起,其在嵌入式设备等实时检测场景中仍具优势,未来可能通过与深度学习结合提升性能。
2025-08-16 10:43:48
544
原创 集成电路学习:什么是Object Detection目标检测
目标检测是计算机视觉的核心任务,用于识别图像/视频中的目标并确定其位置。主要步骤包括候选区域生成、特征提取、分类和回归。技术发展经历了传统方法(HOG+SVM)到深度学习方法(CNN)的演进,代表性算法包括R-CNN系列、YOLO和SSD。该技术广泛应用于安防监控、自动驾驶、医疗诊断和工业自动化等领域。未来将向更鲁棒、实时和可解释的方向发展,并探索多模态融合等新技术。
2025-08-15 23:44:53
1142
瑞芯微RKNN模型部署工具:RKNN Model Zoo
2025-07-26
haarcascades分类器下载资源及示例代码
2020-12-12
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人