目录
前言
知识储备
三维视觉
三维视觉研究内容
三维视觉领域发展现状
几个高频面试题目
机器视觉与计算机视觉的区别与联系
什么是机器视觉
什么是计算机视觉
区别与联系
机器视觉与其他相关领域之间存在怎样的关系?
机器视觉行业发展历程
机器视觉系统组成
机器视觉工作流
机器视觉厂商对比
(一)专门机器视觉公司
(二)自动化机器视觉公司
国内机器视觉企业现状
可能走出去的国内企业
python+opencv实现机器视觉
一:边缘提取
1、特征提取
2.边缘提取
二:图像滤波
1.读取原图
2.均值滤波
3.中值滤波
4.高斯滤波
5.高斯边缘检测
三:边缘检测算子
1.显示原图
2.对图像进行反色
3.对图像用sobel方法进行边缘检测
4.对图像用robert方法进行边缘检测
四:投影
1.显示原图
2.垂直方向投影
3.水平方向投影
五:车牌字符分割
1.读取原图
2.灰度转换
3.反色
4.阈值分割
5.投影
6.字符识别匹配分割
一:宽度测量
二:缺陷检测
三:医学检测
应用领域
发展趋势
代码实现
机器视觉-轮毂检测
目标检测-茶壶检测
前言
近年来,随着5G、6G技术的推广普及,机器视觉产业在人工智能、物联网应用多个赛道展现出蓬勃的生命力。尤其是在技术领域,2D成像向3D视觉感知时代跨越成为大势所趋,这也让3D视觉感知距离规模化产业应用仅有咫尺之遥。在这样的产业背景下,3D摄像技术和3D摄像头市场热度持续升温。近期,国内机器视觉概念多股表现强势,其中就包括多家3D光学领域的行业巨头。
知识储备
三维视觉
三维视觉技术发展,得益于广泛的应用。尤其是最近看到的智能无人系统,智能无人系统包括无人车、无人机以及机器人,还有AR、VR方面,也是得益于三维视觉的发展。这些应用一方面得益于三维视觉,一方面也推动了三维视觉技术的发展。具体来讲,三维视觉得益于三维数据获取的快速发展,首先是各种各样的传感器,最初普通用户不太能够拥有这些设备。越早期设备越大,由原本在飞机上应用的激光雷达,到车上,到小型三维扫描仪,再到手机,比如苹果好多手机厂商都在推深度相机。所以,这给已有或者未来获取三维数据,带来了更大的可能。