MATLAB算法实战应用案例精讲-【人工智能】基于机器视觉的机器人及机械臂运动规划(补充篇)

目录

前言

几个高频面试题目

机器人抓取时怎么定位的?用什么传感器来检测?

相机标定 

 1. 平面物体检测

2. 有纹理的物体 

3. 无纹理的物体

知识储备

运动规划方法

1. 位形空间

2. 基于搜索的运动规划

3. 基于采样的运动规划

 机械臂运动学

机械臂

机械臂-减速机

算法原理

机械臂位姿

目前几种主流的解决方案

刚体的位姿

旋转矩阵(Rotation matrix)

欧拉角(Euler angles) 

齐次变换矩阵(Homogeneous transformation matrix)

手眼标定

手眼标定流程

定位引导

应用案例

运动规划-MoveIt

特点及优势

如何用MoveIt控制机器人

 其他

代码实现

Python

最佳路径优先搜索算法


 

前言

随着工业的发展,在生产中对自动化的要求越来越高,视觉技术已被广泛引入工业(工业机械臂)机器人行业,具备视觉的工业(工业机械臂)机器人能更快、更准、更灵活地完成定位抓取、对位组装等。基于图像分析的视觉技术在(工业机械臂)机器人引导相关应用中的主要作用是精确获取对象物(待抓取物体)和目标物(待组装物体)的坐标位置和角度,并将图像坐标转换为(工业机械臂)机器人能识别的(工业机械臂)机器人坐标,指导(工业机械臂)机器人进行纠偏和组装。因此,手眼标定和定位引导是机器视觉在(工业机械臂)机器人引导中应用的的核心。

在移动机器人的运动规划中,机器人往往是以一个【点】存在,对移动机器人的规划,更多的是使用各种搜索算法,在已经构建好的地图模型上,搜索出一条路径从起始点到终止点的路径曲线。而机械臂的运动规划是多个刚体结构的运动。在考虑其运动规划时,需要同时考虑多个刚体的(或者说关节)的运动,因此,如何同时表征多个刚体(或关节)的运动就变得比较重要了。

几个高频面试题目

<think>好的,用户现在想查找关于SCARA机械仿真的方法或工具。我需要根据用户提供的引用和之前的知识来整理合适的回答。首先,用户提到了三个引用,分别涉及VREP(现在叫CoppeliaSim)、ZMC运动控制器和Gazebo。我需要确认这些工具是否适用于SCARA机械的仿真。 首先,引用[1]提到VREP(CoppeliaSim)与MATLAB联合实现SCARA机械的仿真,包括分拣和统计。这说明VREP是一个可行的工具,适合机械建模和仿真,尤其是结合MATLAB进行控制算法开发。然后,引用[2]是关于ZMC运动控制器的,它支持SCARA机械手的指令,可能更多涉及实际控制器的编程,但仿真部分可能需要结合其他软件。引用[3]使用Gazebo进行仿真,通过继承接口控制机械运动,说明Gazebo也是一个常用工具,尤其是结合ROS时。 接下来,我需要考虑其他常见的仿真工具,比如MATLAB/Simulink本身也有Robotics System Toolbox,可以用于机械仿真。此外,ROS(机器人操作系统)中的MoveIt和RViz也是常用的仿真和可视化工具。可能用户需要了解这些选项。 用户的问题是关于方法和工具,所以需要分点说明,每个工具的特点、适用场景和步骤。比如,CoppeliaSim适合多物理仿真,Gazebo适合ROS集成,MATLAB适合算法设计,ZMC可能更偏向于控制器应用。同时,要确保回答结构清晰,符合用户要求的格式,比如使用中文,正确应用LaTeX格式,生成相关问题等。 还需要检查是否有遗漏的工具,比如Webots或SolidWorks的仿真模块,但根据提供的引用,可能不需要提到。此外,要确保每个工具的介绍包括如何操作或实现仿真的基本步骤,例如建模、控制算法、联合仿真等。 最后,生成的相关问题需要围绕SCARA仿真的优化、算法比较、控制器选择等,帮助用户进一步探索。确保引用标注正确,比如[^1]、[^2]、[^3]对应提供的引用内容。</think>### SCARA机械仿真方法与工具 SCARA机械的仿真涉及运动学建模、轨迹规划和物理环境模拟,以下是常用工具及实现方法: --- #### 一、主流仿真工具及特点 1. **CoppeliaSim(V-REP)** - **特点**:支持多物理场仿真(刚体动力学、碰撞检测、视觉传感器),内置SCARA模型库,支持Lua/Python/MATLAB联合编程[^1]。 - **实现步骤**: - 导入SCARA模型或通过URDF构建自定义模型 - 添加视觉传感器模拟分拣场景 - 通过MATLAB编写控制算法(如逆运动学求解)并实时交互 - 示例代码片段: ```lua sim.setJointTargetVelocity(jointHandle, velocity) -- 控制关节速度 ``` 2. **MATLAB/Simulink** - **特点**:适合算法验证,提供Robotics System Toolbox,支持$SE(3)$空间轨迹规划- **实现步骤**: - 定义SCARA的DH参数:$$ \theta_i, d_i, a_i, \alpha_i $$ - 使用`rigidBodyTree`构建运动学模型 - 通过`inverseKinematics`求解逆运动学并生成轨迹 3. **Gazebo+ROS** - **特点**:与ROS深度集成,适合SLAM、视觉抓取等复杂任务[^3]。 - **实现步骤**: - 在URDF中定义SCARA的连杆与关节约束 - 通过`MoveIt!`插件实现路径规划 - 调用ROS服务控制机械动作: ```python rospy.ServiceProxy('/scara/move_to', MoveJoint) ``` 4. **ZMC运动控制器** - **特点**:硬件在环仿真(HIL),支持电子齿轮、螺旋插补等高级指令[^2]。 - **实现步骤**: - 使用`CONNFRAME`指令建立坐标系 - 通过`MOVESCARA`指令驱动四轴联动 - 示例指令: ```plaintext BASE(1,2,3,4) -- 绑定轴组 MOVESCARA(100,100,0,50) -- 目标位置与速度 ``` --- #### 二、方法对比 | 工具 | 适用场景 | 物理精度 | 开发难度 | |---------------|--------------------------|----------|----------| | CoppeliaSim | 多传感器集成仿真 | 高 | 中 | | MATLAB | 控制算法快速验证 | 低 | 低 | | Gazebo | ROS生态下的复杂任务 | 中 | 高 | | ZMC控制器 | 实际控制器指令测试 | 硬件级 | 中 | ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值