目录
几个高频面试题目
LLM 进行图像识别与传统 OCR 对比时的主要缺点
LLM 的缺点
-
高计算资源需求:
-
-
训练成本:训练大型语言模型需要大量的计算资源,包括高性能 GPU 和大规模的数据集。这导致训练成本非常高昂。
-
推理成本:即使在模型训练完成后,进行实时推理也需要较高的计算资源,这对于资源有限的设备(如嵌入式系统)来说是一个挑战。
-
-
数据隐私和安全问题:
-
-
数据收集:训练 LLM 需要大
-
目录
LLM 的缺点
高计算资源需求:
训练成本:训练大型语言模型需要大量的计算资源,包括高性能 GPU 和大规模的数据集。这导致训练成本非常高昂。
推理成本:即使在模型训练完成后,进行实时推理也需要较高的计算资源,这对于资源有限的设备(如嵌入式系统)来说是一个挑战。
数据隐私和安全问题:
数据收集:训练 LLM 需要大