目标检测YOLO实战应用案例100讲-SAR图像多尺度舰船目标检测(续)

目录

3.3.2 相似超像素聚合 

3.4 实验分析 

3.4.1 实验方案设计 

 3.4.2 实验结果分析 

复杂场景SAR图像多尺度舰船目标检测 

4.1 引言 

4.2 视觉显著性谱残差算子 

 4.2.1 谱残差算子的基本原理 

4.2.2 谱残差显著图的实现 

4.3 YOLO系列目标检测基础 

4.4 复杂场景SAR图像多尺度舰船目标检测方法 

4.4.1 特征提取与融合 

4.4.2 边界框回归预测 

4.4.3 损失函数 

4.5 实验分析 

4.5.1 实验方案设计 

 4.5.2 实验结果分析 

知识拓展

SAR目标检测识别中一些基本概念

SAR图像特征

高分辨率SAR图像目标特征提取

INSAR的研究与应用

雷达中常用到的符号

基于 YOLOV5 的 SAR 图像舰船检测

SAR目标检测和识别常用的技术和方法

数据集LS-SSDD

算法理论原理

检测的实现


本文篇幅较长,分为上下两篇,上篇详见SAR图像多尺度舰船目标检测

3.3.2 相似超像素聚合 


在初始超像素生成阶段,经过多次迭代后超像素的个数会比初始设定的K值 略多一点。由于超像素初始生成个数K参数决定了初始划分区域间隔S,随之与初 始聚类中心的个数关联,从而影响超像素边界与舰船目标的贴合程度。设置过小的 K虽然像素聚类速度快,但容易出现图像过分割,不能把背景和舰船目标准确划分到不同的超像素,得到的超像素精度较低;设置过大的K虽然超像素的边缘贴合度 较高,但牺牲了速度。 
基于上述问题,为了解决由手动设置K参数导致的同质区域过分割问题加入 了相似超像素聚合阶段,利用舰船目标SAR图像特征中的纹理特征,设计了超像 素聚合准则,通过多向灰度共生矩阵进行纹理相似判决,从而将具有相似纹理特征 的同质超像素合并,进一步得到更加贴合目标轮廓的完整的超像素,示意图如图3- 7所示。 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值