目标检测YOLO实战应用案例100讲-基于改进YOLO v7的智能振动分拣系统开发(续)

目录

3.2 引入EIOU损失函数 

3.2.1 CIOU损失函数 

3.3.2 基于Focal-EIOU损失函数的网络优化 ​编辑

3.3 注意力机制模块 

 3.3.1 通道注意力机制 

3.3.2 CA注意力机制 

3.3.3 CBAM注意力机制模块 

 3.3.4 注意力机制放置位置 

3.4 实验过程和结果分析 

 3.4.1 评价指标 

 3.4.2 参数设置 

3.4.3 网络模型对比实验 

振动方案设计与数据集制作 

4.1 振动方案设计 

4.1.1 振动指令组成 

 4.1.2 振动参数构成 

4.1.3 振动参数选择 

4.1.4 振动序列集成 

4.2 数据集制作 

4.2.1 坐标系转换 

4.2.2 相机畸变模型 

4.2.3 数据集构建 

 4.2.4 数据获取 

4.2.5 图像标注 

4.3 实验结果分析 

电子元件分拣系统实验与验证 

5.1 硬件平台搭建 

5.2 软件平台的搭建 

5.2.1 网络模型部署 

5.2.2 系统通讯 

5.2.3 系统界面设计 

5.3 电子元件识别与抓取 

5.3.1 实验结果及分析 

5.3.2 电子元件分拣测试 


本文篇幅较长,分为上下两篇,上篇详见基于改进YOLO v7的智能振动分拣系统开发

3.2 引入EIOU损失函数 


在YOLO系列中,不仅要对检测的目标进行分类,还要对检测的目标进 行定位,故此时要依赖于损失函数发挥的作用,在训练时模型的损失函数越 小则表明目标定位越准确,YOLO网络模型的损失函数由三部分组成:边界 框预测的损失函数、目标检测的置信度损失函数和类别预测的损失函数[ 52]。 为了能够有效的检测小物体,本节从损失函数出发,改进CIOU边界框损失 函数,提高模型目标检测的性能。  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值