目录
3.3.2 基于Focal-EIOU损失函数的网络优化 编辑
本文篇幅较长,分为上下两篇,上篇详见基于改进YOLO v7的智能振动分拣系统开发
3.2 引入EIOU损失函数
在YOLO系列中,不仅要对检测的目标进行分类,还要对检测的目标进 行定位,故此时要依赖于损失函数发挥的作用,在训练时模型的损失函数越 小则表明目标定位越准确,YOLO网络模型的损失函数由三部分组成:边界 框预测的损失函数、目标检测的置信度损失函数和类别预测的损失函数[ 52]。 为了能够有效的检测小物体,本节从损失函数出发,改进CIOU边界框损失 函数,提高模型目标检测的性能。