MATLAB算法实战应用案例精讲-【图像处理】机器人视觉

目录

前言

 机器人视觉发展历程

知识储备

光的偏振

01偏振光

 02偏振应用

算法原理

三维成像

飞行时间3D成像

扫描3D成像

结构光投影3D成像

立体视觉3D成像

机器人视觉3D成像方法比较

机器人3D视觉方案

机器人3D视觉方案对比分析

机器人视觉系统中的嵌入式技术

机器人视觉引导定位

01视觉引导机器人定位抓取

02视觉引导和定位

03机器视觉元件定位的重要性

04案例应用

机器人3D视觉应用场景

多模态GPT+机器人视觉


 

前言

在智能制造过程中,通过传统的编程来执行某一特定动作的机器人(机械手、机械手臂、机械臂等,未作特殊说明时,不作严格区分,统一称为机器人),将难以满足制造业向前发展的需求。很多应用场合下,需要为工业机器人安装一双眼睛,即机器视觉成像感知系统,使机器人具备识别、分析、处理等更高级的功能。这在高度自动化的大规模生产中非常重要,只有当工业机器人具有视觉成像感知系统,具备观察目标场景的能力时,才能正确地对目标场景的状态进行判断与分析,做到智能化灵活地自行解决发生的问题。

在工业应用领域,最具有代表性的机器人视觉系统就是机器人手眼系统。根据成像单元安装方式不同,机器人手眼系统分为两类:固定成像单元眼看手系统(Eye-to-Hand)和随动成像单元眼在手系统(Eye-in-Hand or Hand-Eye)。

在Eye-to-Hand系统中,视觉成像单元安装在机器人本体外的固定位置,在机器人工作过程中不随机器人一起运动,当机器人或目标运动到机械臂可操作的范围时,机械臂在视觉感知信息的反馈控制下,向目标移动,对目标进行精准操控。Eye-to-Hand系统的优点是具有全局视场,标定与控制简单、抗震性能好、姿态估计稳定等,但也存在分辨率低、容易产生遮挡问题等缺点。

在Eye-in-Hand系统中,成像单元安装在机器人手臂末端,随机器人一起运动。Eye-in-Hand系统常用在有限视场内操控目标,不会像 Eye-to-H

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值