MATLAB算法实战应用案例精讲-【数模应用】漫谈机器学习(六)

本文介绍了自动机器学习(AutoML)的背景和优势,探讨了自动特征工程的重要性,包括框架和常用工具。文章提到了DataRobot、H2O的无人驾驶AI、Auto-sklearn等自动化工具,并讨论了模型选择、超参数调整和神经网络结构选择。此外,还阐述了特征工程的定义、方法及其在机器学习中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

知识储备

机器学习术语

算法原理 

自动机器学习

自动特征工程

框架

自动选择模型和超参数调整

神经网络结构选择

自动部署

特征工程

什么是特征工程?

如何做特征工程?


 

知识储备

机器学习术语

索引编号 英文术语 中文翻译 常用缩写 来源&扩展 备注
AITD-00000 0-1 Loss Function 0-1损失函数 [1]
AITD-00003 Accept-Reject Sampling Method 接受-拒绝抽样法/接受-拒绝采样法 [1]
AITD-00006 Accumulated Error Backpropagation 累积误差反向传播
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值