目标检测YOLO实战应用案例100讲-基于深度学习的SAR图像舰船目标检测(续)

目录

4基于自注意力机制的YOLO-v3算法的SAR图像目标检测

4.1 YOLO系列发展现状

4.2自注意力机制

4.2.1自注意力机制概述

4.2.2基于自注意力机制的YOLO-v3网络模型

4.3实验结果展示

5 SAR图像数据集的数据增强方法对比实验

5.1 SAR图像数据集的数据增强

5.2五种原始数据集检测效果展示

5.2.1 SSDD数据集检测效果图示

5.2.2 LS-SSDD-v1.0-open-SSDD-v1.0-OPEN数据集检测效果图示

5.2.3 Ship-dataset数据集检测效果图示

5.2.4 AIR-SARShip-dataset数据集检测效果图示

5.2.5 HRSID数据集检测效果图示

5.3八种数据增强方法概述及效果展示

5.3.1 Cutout数据增强方法概述及效果展示

5.3.2 Random Erasing数据增强方法概述及效果展示

5.3.3 Mixup数据增强方法概述及效果展示

5.3.4 Cutmix数据增强方法概述及效果展示

5.3.5 Augmix数据增强方法概述及效果展示

5.3.6 Gridmask数据增强方法概述及效果展示

5.3.7 Mosic数据增强方法概述及效果展示

5.3.8 Copy-paste数据增强方法概述及效果展示

5.4四种算法与实验结果纪录

5.4.1 Faster-RCNN框架概述及匹配各大增强方法的实验结果汇总

5.4.2 Retinanet框架概述及匹配各大增强方法的实验结果汇总

5.4.3 YOLO-v3框架概述及匹配各大增强方法的实验结果汇总

5.4.4 Centernet框架概述及匹配各大增强方法的实验结果汇总

知识拓展

基于双参数c-far实现SAR图像舰船目标检测

遥感SAR舰船数据集介绍

SAR舰船检测数据集SSDD的训练集和检测集划分

目标检测模型的评价指标

精确率、召回率与F1

 

AP 与 mAP

目标检测度量标准汇总​编辑​编辑

SAR图像处理与解译-分类

如何训练YOLOv8


本文篇幅较长,分为上下两篇,上篇详见基于深度学习的SAR图像舰船目标检测

4基于自注意力机制的YOLO-v3算法的SAR图像目标检测


4.1 YOLO系列发展现状


近几年有关YOLO系列的改进研究层出不穷,将其

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值