目标检测YOLO实战应用案例100讲-结合YOLOv5神经网络轻量化改进的视觉SLAM(续)

本文研究了YOLOv5模型的轻量化改进,通过替换backbone部分为RepVGG或GhostNet以提高实时性和准确性。在动态场景下,结合光流法和GMS运动一致性约束实现动态特征点去除,以改善视觉SLAM的性能。实验表明,RepVGG与YOLOv5结合的模型在精度和速度上优于MobileNet V3,而GMS算法能有效提高动态点去除的准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

3.3 YOLO模型轻量化改进

3.3.1目标检测算法改进方向

3.3.2改进算法性能对比与算法选择

3.4语义分割模型选择

基于目标检测的动态场景下动态点去除算法研究

4.1基于光流法的动态目标检测算法研究

4.1.1理论描述与分析

4.1.2实验测试与分析

4.2加入GMS运动一致性约束的动态点去除算法

4.3基于动态特征点识别与去除的视觉SLAM对应线程设计

动态环境视觉定位算法实验

5.1实验平台介绍

5.2基于数据集的定位精度仿真实验

5.2.1 TUM数据集

5.2.2 TUM动态数据集动态特征点去除

5.2.3改进前后位姿精度对比

5.2.4地图构建以及实时语义分割

知识拓展

 结合YOLOv8轻量化改进与视觉SLAM的实现

一、环境配置与依赖库

二、YOLOv8轻量化改进(关键代码)

1. 模型配置文件修改(yolov8n-slam.yaml )

2. 动态特征点过滤模块(slam_dynamic_filter.py )

三、ORB-SLAM3集成(核心修改)

1. 修改跟踪线程(Tracking.cc )

2. 编译配置(CMakeLists.txt )

四、关键优化策略

五、运行示例


本文篇幅较长,分为上下两篇,上篇详见结合YOLOv5神经网络轻量化改进的视觉SLAM

3.3 YOLO模型轻量化改进


本论文研究应用场景为室内环境,运动主体为搭载RGBD摄像头的移动机
器人。为了增加实用性,本论文设计对可移植性有一定的需求,不过度受电脑
配置影响,因此需要在保证精度的情况下对YOLOv5模型进行轻量化改进。下
面将从模型结构、模型特点以及实验需求方面进行目标检测

### SLAMYOLO结合或对比 #### 背景概述 视觉同步定位与地图构建(Visual Simultaneous Localization And Mapping, VSLAM)是一种利用摄像头或其他传感器来实现实时定位和环境三维重建的技术。而YOLO(You Only Look Once)作为一种高效的实时目标检测框架,在计算机视觉领域具有广泛应用价值。两者结合可以显著提升机器人或自动驾驶车辆对复杂动态环境中物体的理解能力。 #### 对象检测在VSLAM中的作用 语义VSLAM中的对象检测模块能够帮助系统从图像中提取有意义的对象信息[^1]。通过将对象检测功能集成到传统的几何SLAM流程中,不仅可以增强系统的鲁棒性和精度,还可以生成带有语义标签的地图,从而支持更高层次的任务需求,例如路径规划和服务型机器人操作。 #### 单阶段 vs 双阶段方法 当前用于语义VSLAM目标检测技术主要包括两类:单阶段方法(One-stage Method)和双阶段方法(Two-stage Method)。其中,YOLO属于典型的单阶段检测器,因其快速推理速度特别适合嵌入式设备上的实时处理场景;相比之下,像Faster R-CNN这样的双阶段方案虽然准确性较高但计算成本较大[^3]。 #### 表格比较传统VSLAM与深度学习驱动的方法 | 特性 | 传统VSLAM | 基于DL 的VSLAM | |---------------------|------------------------------|----------------------------| | 数据依赖 | 手工设计特征 | 大量标注数据 | | 计算效率 | 较高 | 需要GPU 加速 | | 泛化性能 | 差 | 更好 | 上述表格展示了经典算法与现代基于深度学习版本之间的一些差异[^2]。可以看出引入神经网络模型后虽增加了硬件资源消耗但也带来了更好的适应新环境的能力。 #### 实现案例分析 当把YOLO融入到整个SLAM架构里时通常有两种方式: 一种是在前端部分增加额外层专门负责识别感兴趣区域(ROI),然后再传递给后跟踪估计环节; 另一种则是完全重构原有管道使其具备端到端特性即直接输出带位置姿态预测框的结果再反馈调整相机位姿参数直至收敛稳定状态为止。 以下是简单演示如何调用pytorch版yolov5进行初步测试的小例子: ```python import torch from torchvision import transforms as T def detect_objects(image_path): model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # Load pre-trained YOLOv5 model transform = T.Compose([T.ToTensor()]) img_tensor = transform(Image.open(image_path)) results = model(img_tensor.unsqueeze(dim=0)) # Perform inference return results.pandas().xyxy[0] detected_items = detect_objects("test.jpg") print(detected_items) ``` 此脚本加载了一个轻量化版本的YOLO预训练权重文件并接受一张图片作为输入最后返回所有发现物品及其边界坐标列表形式的数据结构供进一步解析使用。 #### 结论 综上所述,融合了先进目标探测机制后的新型语义级别V-SLAM解决方案不仅保留了原始框架的核心优势同时还极大地扩展了其应用场景范围未来还有望继向着更加智能化方向发展下去[^4]。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值