目标检测YOLO实战应用案例100讲-基于深度学习的海上船舶识别

目录

知识储备

YOLOv5深度学习海上船舶识别

深度学习理论与目标检测算法

基于YOLOv5的船舶识别研究与改进

基于深度学习的船舶识别代码

前言

研究意义 

国内外研究现状

国外研究现状 

国内研究现状 

2 深度学习基础理论 

2.1 卷积神经网络 

2.1.1 卷积层 

2.1.2 池化层 

2.1.3 激活函数 

2.1.4 全连接层 

2.1.5 CNN训练流程 

2.2 深度学习框架 

2.2.1 Caffe 

2.2.2 TensorFlow 

2.2.3 PyTorch 

2.3 常用目标识别算法模型 

2.3.1 Le Net网络模型 

2.3.2 Faster R-CNN算法 

2.3.3 YOLO算法 

2.3.4 算法对比 

3 基于深度学习的海上船舶识别研究与改进 

3.1 YOLOv5算法 

3.1.1 Input部分 

3.1.2 Backbone部分 

3.1.3 Neck部分 

3.1.4 Output部分 


本文篇幅较长,分为上下两篇,下篇详见基于深度学习的海上船舶识别(续)

知识储备

YOLOv5深度学习海上船舶识别

   准确有效的海上船舶识别技术对于提高船舶航行安全是非常重要的,同时也是船舶智能化发展的关键技术。传统的船舶识别主要依靠船舶自动识别系统(Automatic identification system,AIS)和雷达等通信导航设备完成。船舶雷达主要用于航行避让、船舶定位和狭水道引航等,是船舶航行必要的导航设备,但其也存在目标误识别、目标丢失和易受环境噪声影响等缺点。船舶自动识别系统能够准确获得船舶基本信息,可辅助识别船只、协助追踪目标、简化信息交流和提供其他辅助信息,以避免碰撞发生,但对于未装配该系统或终端关机的船舶则无法获取相关信息。上述基于通信导航设备的船舶识别方法有其优点,但因无法获取船舶直观图像,在港口

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值