Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of Nonlinear Science
  3. Article

Coherent Swing Instability of Power Grids

  • Open access
  • Published: 07 February 2011
  • Volume 21, pages 403–439, (2011)
  • Cite this article

You have full access to this open access article

Download PDF
Journal of Nonlinear Science Aims and scope Submit manuscript
Coherent Swing Instability of Power Grids
Download PDF
  • Yoshihiko Susuki1 nAff2,
  • Igor Mezić1 &
  • Takashi Hikihara2 
  • 2112 Accesses

  • 84 Citations

  • Explore all metrics

Abstract

We interpret and explain a phenomenon in short-term swing dynamics of multi-machine power grids that we term the Coherent Swing Instability (CSI). This is an undesirable and emergent phenomenon of synchronous machines in a power grid, in which most of the machines in a sub-grid coherently lose synchronism with the rest of the grid after being subjected to a finite disturbance. We develop a minimal mathematical model of CSI for synchronous machines that are strongly coupled in a loop transmission network and weakly connected to the infinite bus. This model provides a dynamical origin of CSI: it is related to the escape from a potential well, or, more precisely, to exit across a separatrix in the dynamical system for the amplitude of the weak nonlinear mode that governs the collective motion of the machines. The linear oscillations between strongly coupled machines then act as perturbations on the nonlinear mode. Thus we reveal how the three different mode oscillations—local plant, inter-machine, and inter-area modes—interact to destabilize a power grid. Furthermore, we present a phenomenon of short-term swing dynamics in the New England (NE) 39-bus test system, which is a well-known benchmark model for power grid stability studies. Using a partial linearization of the nonlinear swing equations and the proper orthonormal decomposition, we show that CSI occurs in the NE test system, because it is a dynamical system with a nonlinear mode that is weak relative to the linear oscillatory modes.

Article PDF

Download to read the full article text

Similar content being viewed by others

Engineering structural robustness in power grid networks susceptible to community desynchronization

Article Open access 21 May 2019

Research on high proportion of clean energy grid-connected oscillation risk prediction technology based on CNN and trend feature analysis

Article Open access 13 December 2023

The impact of model detail on power grid resilience measures

Article 25 May 2016

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Control and Systems Theory
  • Energy Grids and Networks
  • Multistability
  • Nonlinear Dynamics and Chaos Theory
  • Electrical Power Engineering
  • Waves, instabilities and nonlinear plasma dynamics
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  • Abed, E.H., Varaiya, P.P.: Nonlinear oscillations in power systems. Electr. Power Energy Syst. 6(1), 37–43 (1984)

    Article  Google Scholar 

  • Andersson, G., Donalek, P., Farmer, R., Hatziargyriou, N., Kamwa, I., Kundur, P., Martins, N., Paserba, J., Pourbeik, P., Sanchez-Gasca, J., Schulz, R., Stankovic, A., Taylor, C., Vittal, V.: Causes of the 2003 major grid blackouts in North America and Europe, and recommended means to improve system dynamic performance. IEEE Trans. Power Syst. 20(4), 1922–1928 (2005)

    Article  Google Scholar 

  • Arnold, V.I.: Mathematical Methods of Classical Mechanics, 2nd edn. Graduate Texts in Mathematics, vol. 60. Springer, New York (1989)

    Google Scholar 

  • Athay, T., Podmore, R., Virmani, S.: A practical method for the direct analysis of transient stability. IEEE Trans. Power Appar. Syst. PAS-98(2), 573–584 (1979)

    Article  Google Scholar 

  • Avramović, B., Kokotović, P.V., Winkelman, J.R., Chow, J.H.: Area decomposition for electromechanical models of power systems. Automatica 16, 637–648 (1980)

    Article  MATH  Google Scholar 

  • Blaabjerg, F., Teodorescu, R., Liserre, M., Timbus, A.V.: Overview of control and grid synchronization for distributed power generation systems. IEEE Trans. Ind. Electron. 53(5), 1398–1409 (2006)

    Article  Google Scholar 

  • Chiang, H.-D.: Power system stability. In: Webster, J.G. (ed.) Wiley Encyclopedia of Electrical and Electronics Engineering, pp. 105–137. Wiley, New York (1999)

    Google Scholar 

  • Chu, C.-C.: Towards a theory of multi-swing transient instability problems in electric power systems. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E88-A(10), 2692–2695 (2005)

    Article  Google Scholar 

  • Corsi, S., Sabelli, C.: General blackout in Italy Sunday September 28, 2003, h. 03:28:00. In: Proceedings of the IEEE PES General Meeting, Denver, USA, June 2004, vol. 2, pp. 1691–1702 (2004)

    Chapter  Google Scholar 

  • Dobson, I., Zhang, J., Greene, S., Engdahl, H., Sauer, P.W.: Is strong model resonance a precursor to power system oscillations? IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 48(3), 614–622 (2001)

    Article  Google Scholar 

  • Du Toit, P., Mezić, I., Marsden, J.: Coupled oscillator models with no scale separation. Physica D 238(5), 490–501 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Eisenhower, B., Mezić, I.: A mechanism for energy transfer leading to conformation change in networked nonlinear systems. In: Proceedings of the 46th IEEE Conference on Decision and Control, New Orleans, USA, December, pp. 3976–3981 (2007)

    Chapter  Google Scholar 

  • Eisenhower, B., Mezić, I.: Actuation requirements of high dimensional oscillator systems. In: Proceedings of the 2008 American Control Conference, Seattle, USA, June, pp. 177–182 (2008)

    Chapter  Google Scholar 

  • Eisenhower, B., Mezić, I.: Targeted activation in deterministic and stochastic systems. Phys. Rev. E 81, 026603 (2010)

    Article  Google Scholar 

  • Feeny, B.F., Kappagantu, B.: On the physical interpretation of proper orthogonal modes in vibrations. J. Sound Vib. 211(4), 607–616 (1998)

    Article  Google Scholar 

  • Forest, M.G., Goedde, C.G., Sinha, A.: Instability-driven energy transport in near-integrable, many degrees-of-freedom, Hamiltonian systems. Phys. Rev. Lett. 68(18), 2722–2725 (1992)

    Article  Google Scholar 

  • Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Applied Mathematical Sciences, vol. 42. Springer, New York (1983)

    MATH  Google Scholar 

  • Hatziargyriou, N., Asano, H., Iravani, R., Marnay, C.: Microgrids. IEEE Power Energy Mag. 5(4), 78–94 (2007)

    Article  Google Scholar 

  • Hikihara, T., Sawada, T., Funaki, T.: Enhanced entrainment of synchronous inverters for distributed power sources. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E90-A(11), 2516–2525 (2007)

    Article  Google Scholar 

  • Holmes, P., Lumley, J.L., Berkooz, G.: Turbulence, Coherent Structures, Dynamical Systems, and Symmetry. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  • IEEE/CIGRE Joint Task Force on Stability Terms and Definitions: Definition and classification of power system stability. IEEE Trans. Power Syst. 19(2), 1387–1401 (2004)

    Google Scholar 

  • Kopell, N., Washburn, R.B. Jr.: Chaotic motions in the two-degree-of-freedom swing equations. IEEE Trans. Circuits Syst. CAS-29(11), 738–746 (1982)

    Article  MathSciNet  Google Scholar 

  • Kundur, P.: Power System Stability and Control. McGraw-Hill, New York (1994)

    Google Scholar 

  • Lasseter, R.H., Paigi, P.: Microgrid: A conceptual solution. In: Proceedings of the IEEE 35th Power Electronics Specialists Conference, Aachen, Germany, June 20–25, pp. 4285–4290 (2004)

    Google Scholar 

  • Lin, C.-M., Vittal, V., Kliemann, W., Fouad, A.A.: Investigation of modal interaction and its effects on control performance in stressed using normal forms of vector fields. IEEE Trans. Power Syst. 11(2), 781–787 (1996)

    Article  Google Scholar 

  • Melnikov, V.K.: On the stability of the center for time periodic perturbations. Trans. Mosc. Math. Soc. 12, 1–56 (1963)

    Google Scholar 

  • Messina, A.R., Vittal, V.: Extraction of dynamic patterns from wide-area measurements using empirical orthogonal functions. IEEE Trans. Power Syst. 22(2), 682–692 (2007)

    Article  Google Scholar 

  • Mezić, I.: Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear Dyn. 41, 309–325 (2005a)

    Article  MATH  Google Scholar 

  • Mezić, I.: Dynamics and control of large-scale molecular motion. In: Proceedings of the IFAC World Congress (2005b)

    Google Scholar 

  • Mezić, I.: On the dynamics of molecular conformation. Proc. Natl. Acad. Sci. USA 103(20), 7542–7547 (2006)

    Article  Google Scholar 

  • Null, J., Archer, C.: Wind power: The ultimate renewable energy source. In: WeatherWise, July/August, pp. 34–40 (2008)

    Google Scholar 

  • Pai, M.A.: Energy Function Analysis for Power System Stability. Kluwer Academic, Dordrecht (1989)

    Google Scholar 

  • Parrilo, P.A., Lall, S., Paganini, F., Verghese, G.C., Lesieutre, B.C., Marsden, J.E.: Model reduction for analysis of cascading failures in power systems. In: Proceedings of the American Control Conference, San Diego, June, pp. 4208–4212 (1999)

    Google Scholar 

  • Peponides, G., Kokotović, P.V., Chow, J.H.: Singular perturbations and time scales in nonlinear models of power systems. IEEE Trans. Circuits Syst. CAS-29(11), 758–766 (1982)

    Article  Google Scholar 

  • Salam, F.M.A., Marsden, J.E., Varaiya, P.P.: Arnold diffusion in the swing equations of a power system. IEEE Trans. Circuits Syst. CAS-31(8), 673–688 (1984)

    Article  MathSciNet  Google Scholar 

  • Susuki, Y., Mezić, I., Hikihara, T.: Global swing instability of multimachine power systems. In: Proceedings of the 47th IEEE Conference on Decision and Control, Cancun, Mexico, December 9–11, pp. 2487–2492 (2008)

    Chapter  Google Scholar 

  • Susuki, Y., Mezić, I., Hikihara, T.: Global swing instability in the New England power grid model. In: Proceedings of the 2009 American Control Conference, St. Luis, United States, June 10–12, pp. 3446–3451 (2009)

    Chapter  Google Scholar 

  • Susuki, Y., Mezić, I., Hikihara, T.: Coherent swing instability of power systems and cascading failures. In: 2010 IEEE Power & Energy Society General Meeting, Minneapolis, United States, June 25–29 (2010)

    Google Scholar 

  • Susuki, Y., Mezić, I., Hikihara, T.: Coherent swing instability of interconnected power systems and a mechanism of cascading failures (2011, in preparation)

  • Tamura, Y., Yorino, N.: Possibility of auto- & hetero-parametric resonances in power systems and their relationship with long-term dynamics. IEEE Trans. Power Syst. PWRS-2(4), 890–896 (1987)

    Article  Google Scholar 

  • Thompson, J.M.T., Stewart, H.B.: Nonlinear Dynamics and Chaos, 2nd edn. Wiley, Chichester (2002)

    MATH  Google Scholar 

  • Ueda, Y., Enomoto, T., Stewart, H.B.: Chaotic transients and fractal structures governing coupled swing dynamics. In: Kim, J.H., Stringer, J. (eds.) Applied Chaos. Wiley, London (1992). Chap. 8

    Google Scholar 

  • Varghese, M., Thorp, J.S.: An analysis of truncated fractal growths in the stability boundaries of three-node swing equation. IEEE Trans. Circuits Syst. 35(7), 825–834 (1988)

    Article  MathSciNet  Google Scholar 

  • Vittal, V., Bhatia, N., Fouad, A.A.: Analysis of the inter-area mode phenomenon in power systems following large disturbance. IEEE Trans. Power Syst. 6(4), 1515–1521 (1991)

    Article  Google Scholar 

  • Vournas, C.D., Pai, M.A., Sauer, P.W.: The effect of automatic voltage regulation on the bifurcation evolution in power systems. IEEE Trans. Power Syst. 11(4), 1683–1688 (1996)

    Article  Google Scholar 

  • Wiggins, S.: Global Bifurcations and Chaos: Analytical Methods. Applied Mathematical Sciences, vol. 73. Springer, New York (1988)

    Book  MATH  Google Scholar 

  • Wiggins, S.: Chaotic Transport in Dynamical Systems. Interdisciplinary Applied Mathematics, vol. 2. Springer, New York (1992)

    MATH  Google Scholar 

  • Yoshida, H.: Construction of higher order symplectic integrators. Phys. Lett. A 150(5–7), 262–268 (1990)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Author notes
  1. Yoshihiko Susuki

    Present address: Department of Electrical Engineering, Kyoto University, Katsura, Nishikyo, Kyoto, 615-8510, Japan

Authors and Affiliations

  1. Department of Mechanical Engineering, University of California, Santa Barbara, CA, 93106-5070, USA

    Yoshihiko Susuki & Igor Mezić

  2. Department of Electrical Engineering, Kyoto University, Katsura, Nishikyo, Kyoto, 615-8510, Japan

    Takashi Hikihara

Authors
  1. Yoshihiko Susuki
    View author publications

    Search author on:PubMed Google Scholar

  2. Igor Mezić
    View author publications

    Search author on:PubMed Google Scholar

  3. Takashi Hikihara
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Yoshihiko Susuki.

Additional information

Communicated by V. Rom-Kedar.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Cite this article

Susuki, Y., Mezić, I. & Hikihara, T. Coherent Swing Instability of Power Grids. J Nonlinear Sci 21, 403–439 (2011). https://doi.org/10.1007/s00332-010-9087-5

Download citation

  • Received: 22 September 2009

  • Accepted: 11 December 2010

  • Published: 07 February 2011

  • Issue date: June 2011

  • DOI: https://doi.org/10.1007/s00332-010-9087-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Power system
  • Stability
  • Transient stability
  • Coupled dynamical systems
  • Coupled oscillators
  • Nonlinear dynamics

Mathematics Subject Classification (2000)

  • 37N99
  • 70K20
  • 93C10
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature