一、题目
给定一个长度为4的整数数组 cards
。你有 4
张卡片,每张卡片上都包含一个范围在 [1,9]
的数字。您应该使用运算符 ['+', '-', '*', '/']
和括号 '('
和 ')'
将这些卡片上的数字排列成数学表达式,以获得值24。
你须遵守以下规则:
- 除法运算符
'/'
表示实数除法,而不是整数除法。- 例如,
4 /(1 - 2 / 3)= 4 /(1 / 3)= 12
。
- 例如,
- 每个运算都在两个数字之间。特别是,不能使用
“-”
作为一元运算符。- 例如,如果
cards =[1,1,1,1]
,则表达式“-1 -1 -1 -1”
是 不允许 的。
- 例如,如果
- 你不能把数字串在一起
- 例如,如果
cards =[1,2,1,2]
,则表达式“12 + 12”
无效。
- 例如,如果
如果可以得到这样的表达式,其计算结果为 24
,则返回 true
,否则返回 false
。
示例 1:
输入: cards = [4, 1, 8, 7] 输出: true 解释: (8-4) * (7-1) = 24
示例 2:
输入: cards = [1, 2, 1, 2] 输出: false
提示:
cards.length == 4
1 <= cards[i] <= 9
二、解题思路
要将 4 张卡片上的数字通过运算符(`+`, `-`, `*`, `/`)和括号组合成结果为 24 的表达式,可以采用以下方法:
1. 排列组合:
首先,对 4 个数字进行全排列,尝试所有可能的顺序。
2. 运算符组合:
对于每一种数字排列,尝试所有可能的运算符组合(共 4^3 = 64 种)。
3. 括号优先级:
对于每一种数字和运算符的组合,尝试不同的括号优先级,确保所有可能的计算顺序都被考虑。
4. 计算结果:
对于每一种组合,计算表达式的值,如果结果等于 24,则返回 `true`。
5. 边界条件:
除法运算时,除数不能为 0。
由于是实数除法,结果可能是浮点数,需要考虑浮点数精度问题(如使用 `1e-6` 作为误差范围)。
可以通过回溯的方法遍历所有不同的可能性。
三、代码实现
#include <iostream>
#include <vector>
#include <cmath>
#include <algorithm>
using namespace std;
// 判断两个浮点数是否相等(考虑精度误差)
bool isEqual(double a, double b) {
return fabs(a - b) < 1e-6;
}
// 递归计算所有可能的表达式
bool solve(vector<double>& nums) {
if (nums.size() == 1) {
return isEqual(nums, 24); // 判断是否等于 24
}
for (int i = 0; i < nums.size(); i++) {
for (int j = 0; j < nums.size(); j++) {
if (i == j) continue;
vector<double> nextNums;
for (int k = 0; k < nums.size(); k++) {
if (k != i && k != j) {
nextNums.push_back(nums[k]);
}
}
// 尝试四种运算符
for (int op = 0; op < 4; op++) {
double result = 0;
if (op == 0) {
result = nums[i] + nums[j];
} else if (op == 1) {
result = nums[i] - nums[j];
} else if (op == 2) {
result = nums[i] * nums[j];
} else if (op == 3) {
if (isEqual(nums[j], 0)) continue; // 除数为 0,跳过
result = nums[i] / nums[j];
}
// 剪枝:如果结果已经大于 24,跳过
if (result > 24 + 1e-6) continue;
nextNums.push_back(result);
if (solve(nextNums)) {
return true;
}
nextNums.pop_back(); // 回溯
}
}
}
return false;
}
// 主函数
bool judgePoint24(vector<int>& cards) {
vector<double> nums(cards.begin(), cards.end());
return solve(nums);
}
int main() {
vector<int> cards1 = {4, 1, 8, 7};
vector<int> cards2 = {1, 2, 1, 2};
cout << "Input: [4, 1, 8, 7] -> Output: " << (judgePoint24(cards1) ? "true" : "false") << endl;
cout << "Input: [1, 2, 1, 2] -> Output: " << (judgePoint24(cards2) ? "true" : "false") << endl;
return 0;
}
时间复杂度:
数字排列:4! = 24 种。
运算符组合:4^3 = 64 种。
通过剪枝和去重,减少了不必要的计算,实际时间复杂度低于理论值 O(4!×4^3)。
空间复杂度:
递归栈深度为 4,空间复杂度为 O(1)。