目录
🎬 攻城狮7号:个人主页
🔥 个人专栏:《AI前沿技术要闻》
⛺️ 君子慎独!
🌈 大家好,欢迎来访我的博客!
⛳️ 此篇文章主要介绍 AI手术机器人
📚 本期文章收录在《AI前沿技术要闻》,大家有兴趣可以自行查看!
⛺️ 欢迎各位 ✔️ 点赞 👍 收藏 ⭐留言 📝!
前言
2025年7月,美国约翰斯·霍普金斯大学的研究团队发布了一则重磅消息:他们研发的AI手术机器人,在没有人类医生实时操控的情况下,成功、自主地完成了8例猪胆囊切除手术,成功率高达100%。
这则新闻听起来可能有些科幻,但它标志着一个关键的转折点——手术机器人正从一个由人类全权操控的“超级木偶”,开始向一个能独立思考和操作的“智能学徒”转变。
这不禁让人好奇,我们熟知的“达芬奇”等手术机器人,和这个AI新秀到底有什么不同?从“遥控驾驶”到“无人驾驶”,外科手术的未来图景将如何被重塑?
一、遥控大师时代 —— 达芬奇的辉煌与局限
在讨论AI自主手术之前,我们必须先了解它的前辈——以“达芬奇(da Vinci)”为代表的现代手术机器人系统。自2000年获得美国FDA批准以来,达芬奇机器人已经参与了全球超过1200万台手术,是当今微创外科领域当之无愧的王者。
但首先要澄清一个常见的误解:达芬奇机器人并不会自己做手术。它更像是一个精密到极致的远程遥控器械。
它的工作模式通常是这样的:
(1)医生端(Surgeon Console):外科医生坐在一个类似驾驶舱的控制台前,双眼凑近3D目镜,观察手术区域放大了10-15倍的高清三维图像。
(2)患者端(Patient Cart):病床旁立着一台拥有三到四支机械臂的设备,机械臂上装着各种微型手术器械,如手术刀、钳子、剪刀等。
(3)遥控操作:医生通过操纵自己面前的控制器,他的手部、手腕甚至手指的动作,都会被系统精准地转化为患者体内机械臂的同步动作。
达芬奇的革命性贡献在于,它将医生的能力延伸并放大到了前所未有的水平:
(1)超越人眼的视野:提供稳定、高清、可放大的3D视野,让医生能看清人眼难以分辨的细微血管和神经。
(2)超越人手的稳定:系统能自动滤除医生手部的生理性颤抖。哪怕是顶尖的外科医生,手部也难免有轻微抖动,但在机器人操作下,器械末端可以做到纹丝不动。
(3)超越人腕的灵活:机械臂末端的手术器械拥有“可转腕”设计,能在狭小的体腔内实现7个自由度的旋转,远超人手腕的活动极限。
然而,达芬奇的本质是一个“主从式”系统。它只是忠实地、甚至更完美地复现了医生的每一个操作。机器人本身没有判断力,医生的决策就是它的决策,医生的失误也会是它的失误。它是一位顶级的“执行者”,但决策大脑仍然完全是人类。它的成功,极度依赖于背后那位外科医生的经验、判断力和技术水平。
简单来说,传统手术机器人让顶尖的医生如虎添翼,但它无法让一位普通医生立刻拥有顶尖的水平。
二、智能学徒登场 —— AI开始独立思考
现在,让我们回到约翰斯·霍普金斯大学的主角——名为“SRT-H”的AI手术机器人。它与达芬奇最根本的区别在于“自主性”。
如果说达芬奇是医生的“遥控分身”,那SRT-H就是一个正在学习独立操作的“智能学徒”。它不需要医生手把手地实时遥控,而是通过AI系统自己决策如何执行手术。
这个“学徒”是如何培养出来的?
研究人员采用了“语言引导模仿学习”的框架。他们让AI观看了人类外科医生在猪尸体上进行胆囊切除手术的视频,总时长约17小时,包含了1.6万个手术动作。AI不仅看这些动作,还学习将“夹住第二根导管”这类高级指令,分解转化为精准的三维空间运动轨迹。
它内部有两层AI系统协同工作:
第一层(高级AI):像一个总指挥,负责观察内窥镜传来的实时画面,判断当前应该进行哪一步,然后发出简单的指令。
第二层(低级AI):像一个熟练工,负责接收上级指令,并将其精确地转化为机械臂和手术工具的具体运动。
在这次公开的试验中,SRT-H的表现令人印象深刻:
(1)100%的任务成功率:胆囊切除术被分解为17个独立任务,机器人在8次手术中,每一项都成功完成。
(2)具备自我纠错能力:这是智能的体现。机器人在手术中平均每次需要自我纠正6次错误。比如,当它发现夹子没有夹准目标时,它能意识到自己的失误,然后调整角度重新尝试,整个过程完全自主。
(3)超越人类的精准和稳定:虽然它完成手术的平均时间(约5分17秒)比人类医生略长,但它的运动轨迹更平滑、路径更短、动作更稳定,平均抖动幅度比人类低了一个数量级。
这标志着,手术机器人第一次拥有了初级的“手眼脑”协同能力。它不再是一个被动执行的工具,而是一个能观察、判断、操作并根据反馈进行调整的智能体。
三、遥控大师 vs 智能学徒
通过以上分析,我们可以清晰地看到两代手术机器人之间的巨大差异:
从“操作者”到“监督者”,这不仅仅是角色的转变,更预示着外科医疗服务模式的深远变革。
四、通往“无人驾驶”手术室的漫漫长路
SRT-H的成功无疑是革命性的,但我们距离一个完全自主的“无人驾驶”手术室还有多远?挑战依然艰巨。
(1)从“标靶”到“活体”的鸿沟:此次试验是在死猪身上进行的,器官不会移动。而在真实的活体手术中,机器人必须应对因呼吸、心跳导致的器官起伏,以及突发出血等各种意外状况。这些复杂、动态的环境对AI的应变能力提出了指数级的考验。
(2)人机协作的无缝衔接:在目前的试验中,机器人仍需人类护士为其更换手术器械。如何实现完全流程的自动化,或者设计出更高效的人机协作模式,是必须解决的工程问题。
(3)责任、伦理与法规的空白:这是最棘手的问题。如果AI在手术中做出错误决策并导致了医疗事故,责任该由谁承担?是研发AI的公司、批准其使用的医院,还是在一旁监督的医生?在相关的法律法规成熟之前,AI自主手术很难真正进入临床。
尽管挑战重重,但未来的图景依然令人振奋。AI自主手术的终极目标,或许并非完全取代人类医生,而是将医生从重复、繁琐、高强度的体力操作中解放出来,专注于更高层次的诊断、决策和关键节点的处理。
未来的手术室里,可能是一位经验丰富的医生监督着数台AI机器人同时进行标准化手术。AI负责执行那些重复且要求极高精度的部分,而医生则作为最终的“定心丸”,处理最复杂的情况,并对整个过程负责。
这种模式一旦成熟,将有望解决全球性的外科医生短缺问题,让偏远地区的人们也能享受到世界顶级的、标准化的医疗服务。AI不会让医生失业,但它会彻底改变医生的工作方式,将外科手术从一种依赖个人技艺的“手艺活”,推向一个更加精准、普惠、标准化的新纪元。
从这个角度看,约翰斯·霍普金斯大学的这次试验,无疑是为那个时代,稳稳地落下了第一颗关键的棋子。
看到这里了还不给博主点一个:
⛳️ 点赞
☀️收藏
⭐️ 关注
!
💛 💙 💜 ❤️ 💚💓 💗 💕 💞 💘 💖
再次感谢大家的支持!
你们的点赞就是博主更新最大的动力!