瑞芯微上半年营收来了,

上半年数据:

1.营业额约20.5亿(+64%) 

2.净利润约5.4亿(+195%) 

3.扣非净利润5.25亿(+197%)  

营业总收入对比表

归母净利润对比表

扣非净利润对比表

本期业绩变动的主要原因: 

2025 年上半年,AIoT 市场延续 2024 年增长态势,随着AI 技术不断渗透、应用场景持续拓展,当前国内 AIoT 百行百业正在蓬勃发展,增长周期潜力广阔。报告期内,依托公司在 AIoT 产品长期战略布局优势,因应AI 在端侧应用发展的需求,旗舰产品与次新品带领 AIoT 各产品线继续保持高速增长,特别在汽车、工业控制、机器视觉及各类机器人等重点领域持续扩张,为后续的渗透与成长打下良好基础。公司预计 2025 年上半年实现营业收入约20.45 亿元,同比增长 64%左右;实现净利润 5.2 亿元~5.4 亿元,同比增长185%~195%。 

瑞芯微上半年的数据非常好,已经超过了20、21年时候缺芯的阶段,而且利润里补贴的占比已经很小了,是实打实的数据,说明RK已经在其覆盖的领域已经站稳了市场。 RK今年还参加了汽车的展会,展会上直接摆上了比亚迪腾势的车子,说明其在汽车领域也已经铺开了路子。 RK马上就要开开发者大会了,让我们一起看看他今年有什么新产品、新技术、新市场。


### 配置环境 为了在瑞芯微RK平台上成功部署DeepSeek AI模型或应用,需先确保操作系统和硬件支持。通常情况下,Linux发行版如Ubuntu是最常用于此类操作系统的选项之一。对于特定于AI的应用程序来说,CUDA(如果GPU可用)、cuDNN以及其他必要的库也是必需的。 针对瑞芯微平台,官方提供的SDK包内含一系列工具链和支持文件,这些资源能够帮助开发者快速搭建起适合嵌入式设备上的开发环境[^1]。 ```bash sudo apt-get update && sudo apt-get upgrade -y ``` 安装完成后,建议重启系统以使更改生效并验证新设置是否正常工作。 ### 安装依赖项 考虑到DeepSeek可能涉及到复杂的计算机视觉算法实现,在准备阶段还需要额外引入一些Python库和其他软件组件作为支撑: - **OpenCV**: 提供图像处理功能; - **PyTorch/TensorFlow**: 支持构建神经网络架构; - **NumPy/Pandas**: 数据分析与科学计算的基础模块; 通过pip命令可以方便地获取上述大部分需求: ```bash pip install opencv-python numpy pandas torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu ``` 另外,由于EgoObjects数据集特别强调了对细粒度物体的理解能力,因此还需考虑加入专门为此设计的目标检测框架,比如MMDetection等[^2]。 ### 运行测试 完成前期准备工作之后,就可以着手加载预训练好的DeepSeek模型并对指定图片执行推理任务了。这里给出一段简单的代码片段用来展示基本流程: ```python import cv2 from mmdet.apis import init_detector, inference_detector config_file = 'path/to/config/file' checkpoint_file = 'path/to/checkpoint/file' model = init_detector(config_file, checkpoint_file, device='cpu') # 或者device='cuda' 如果有NPU/GPU加速的话 img = cv2.imread('test.jpg') result = inference_detector(model, img) for bbox in result[0]: if len(bbox) != 0: x_min, y_min, x_max, y_max, score = map(int, bbox[:5]) cv2.rectangle(img, (x_min, y_min), (x_max, y_max), color=(0, 255, 0)) cv2.imshow('Detected Objects', img) cv2.waitKey(0) ``` 这段脚本会读取一张名为`test.jpg`的照片,并调用初始化后的探测器对其进行识别标记,最后将带有边框的结果可视化显示出来。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值