RGBT图像融合算法综述

本文概述了五种基于深度学习的RGBT图像融合算法,包括双通道注意力机制、多尺度分析、深度学习模型、注意力机制以及小波变换的方法。每种算法在提取RGB和热红外图像特征及融合上有独特优势,但也存在训练复杂度和数据需求等问题。选择合适的融合算法需考虑应用场景、数据量和计算资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        RGBT图像融合是一种将RGB图像和热红外图像进行融合的技术,以获得更全面、更准确的图像信息。随着深度学习技术的快速发展,基于深度学习的RGBT图像融合算法成为了研究热点。本文将介绍五种当下最热门的基于深度学习的RGBT图像融合算法,并对其算法原理、优缺点进行分析。

双通道注意力机制融合算法

        该算法利用了深度学习中的双通道注意力机制来融合RGB和热红外图像。该算法分为两个步骤:首先,利用卷积神经网络提取RGB和热红外图像的特征;其次,将两个特征图进行融合,并利用注意力机制对特征进行加权求和。该算法的优点是可以有效地提取出RGB和热红外图像的特征,并且可以通过注意力机制对特征进行加权求和,从而得到更准确的融合结果。但是,该算法需要训练双通道神经网络,训练过程较为复杂,且需要大量的数据支撑。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Tofu Intelligence

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值