海思SD3403,SS928/926,hi3519dv500,hi3516dv500移植yolov7,yolov8(1)

本文介绍了在海思SD3403、SS928、HI3519DV500、HI3516DV500等芯片上移植YOLOV7的详细过程,包括环境配置、模型训练、数据集准备、模型配置及ONNX转换。作者分享了训练模型的经验,如手动安装特定版本的依赖库,并指出在ONNX转换中遇到的EfficientNMS层问题。下期将介绍模型部署前的转换工具准备。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

配置好环境的虚拟机可出售,需要可私信联系。

SD3403/SS928/926  SDK环境虚拟机 160G 移动硬盘,可直接拷贝到本地VMware直接打开
SD3403/SS928/926 模型转换虚拟机 160G 移动硬盘,可直接拷贝到本地VMware直接打开

Hi3516dv500/Hi3519DV500 

SDK环境虚拟机

160G 移动硬盘,可直接拷贝到本地VMware直接打开

Hi3516dv500/Hi3519DV500 

模型转换虚拟机

160G 移动硬盘,可直接拷贝到本地VMware直接打开

   

0.前言       

         在海思嵌入式芯片中移植yolov7一直是比较困扰的事情,由于yolov7带来的性能上的质的提升,想了各种方法做移植,但是遇到的阻碍也比较大。相比于英伟达平台,海思平台也好瑞芯微平台或者是其他AI芯片平台,都会有移植上的工作要做。这时英伟达平台从训练到推

### 海思 Hi3519 芯片部署 YOLOv8 模型的解决方案 #### 一、背景概述 海思 Hi3519 是一款广泛应用于视频监控领域的 AI 芯片,具备强大的图像处理能力和一定的神经网络加速性能。YOLOv8 是一种先进的目标检测模型,在精度和速度之间取得了良好的平衡[^2]。为了在该芯片上成功部署 YOLOv8 模型,需经历一系列复杂的转换过程。 --- #### 二、整体部署流程 ##### 1. **模型训练与导出** - 使用 Ultralytics 提供的官方工具完成 YOLOv8 的训练工作。 - 训练完成后,通过 `torch.onnx.export` 将 PyTorch 格式的模型转化为 ONNX 格式[^1]。 ```python import torch model = torch.hub.load('ultralytics/yolov5', 'custom', path='best.pt') # 加载自定义权重 dummy_input = torch.randn(1, 3, 640, 640) # 输入张量形状 torch.onnx.export(model, dummy_input, "yolov8.onnx", opset_version=11) ``` 此部分操作确保了模型能够被后续工具兼容并进一步优化。 --- ##### 2. **ONNX 到 Caffe 模型的转换** 由于海思 SDK 更倾向于支持 Caffe 模型,因此需要借助第三方工具(如 `onnx-simplifier` 和 `mmdeploy`)将 ONNX 文件转换为 Caffe 格式。 ```bash pip install onnxsim mmdeploy onnxsim yolov8.onnx simplified_yolov8.onnx # 简化 ONNX 结构 mmdeploy convert caffe --work-dir ./output --cfg work_dir/deploy_cfg.py simplified_yolov8.onnx output.prototxt output.caffemodel ``` 注意:在此过程中可能遇到层不支持的情况,建议提前验证所使用的算子是否已被完全覆盖。 --- ##### 3. **Caffe 模型到 WK 模型的转换** 利用海思官方提供的 HiSVP 工具链,可将标准 Caffe 模型编译为目标硬件专用的工作流 (Workflow) 模型文件 (.wk)。 具体命令如下: ```bash hiconvertcaffe \ --prototxt=output.prototxt \ --caffemodel=output.caffemodel \ --om=model.wk \ --framework-version="ssd_v1" \ --input-shape="data:1,3,640,640" ``` 上述脚本指定了输入数据尺寸以及框架版本号等必要参数。 --- ##### 4. **模型加载与推理测试** 最后一步是在 Hi3519 平台上实际运行生成好的 `.wk` 文件。通常情况下会编写一段简单的应用程序接口(API),用于读取图片帧并通过调用 NNE 接口执行前向传播计算得出预测结果[^3]。 示例代码片段展示如何初始化环境并与预设函数交互: ```c #include <stdio.h> #include <stdlib.h> int main() { // 初始化资源管理器句柄 HI_S32 s32Ret; MV_HANDLE hModelHandle; s32Ret = MV_InitEnv(); if (s32Ret != HI_SUCCESS) { printf("Failed to init env.\n"); return -1; } // 打开指定路径下的 wk 模型 s32Ret = MV_LoadModel("./model.wk", &hModelHandle); if (s32Ret != HI_SUCCESS) { printf("Failed to load model.\n"); return -1; } // 准备输入缓冲区... float* pInputData = ... ; // 开始推断逻辑 MV_IN_DATA stInData; memset(&stInData, 0, sizeof(MV_IN_DATA)); stInData.pfDataBuf = pInputData; MV_OUT_DATA stOutData; s32Ret = MV_Forward(hModelHandle, &stInData, &stOutData); // 后续解析输出... // 清理释放内存空间 MV_UnloadModel(hModelHandle); MV_DeinitEnv(); return 0; } ``` 以上步骤构成了完整的端到端迁移学习实践指南。 --- ####
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Tofu Intelligence

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值