扩展图像数据集是一种常用的技术,用于增强模型的泛化能力和提高机器学习模型的性能。以下是一些常见的图像数据集扩展方法及其具体实现方式:
-
图像旋转:通过对图像进行不同角度的旋转来增加数据集的多样性。例如,可以将图像旋转10度、20度等不同的角度。在Python中,这可以通过使用PIL库的
rotate
方法实现。from PIL import Image img = Image.open("path_to_image.jpg") rotated_img = img.rotate(angle)
-
水平或垂直翻转:对图像进行水平或垂直翻转。这在对称性较强的图像(例如人脸图像)中特别有用。在Python中,可以使用PIL库的
transpose
方法。flipped_img = img.transpose(Image.FLIP_LEFT_RIGHT)
-
缩放:改变图像的尺寸。可以通过缩放图像到不同的大小来创建更多的训练样本。在Python中,可以使用PIL库的
resize
方法。resized_img = img.resize((new_width, new_height))
- <