哈达玛积
(Hadamard product)是矩阵的一类二元运算,参与运算的两个矩阵要求:
若A=(aij)A=(a_{ij})A=(aij)和B=(bij)B=(b_{ij})B=(bij)是两个同阶矩阵,则称矩阵AAA和BBB的哈达玛积
为C=(cij)C=(c_{ij})C=(cij),其中cij=aij×bijc_{ij}=a_{ij}×b_{ij}cij=aij×bij。
哈达玛积
也称为基本积
,以上可以记作A∘B=CA\circ B=CA∘B=C
可以看到哈达玛积
为两个同阶矩阵的对应元素相乘。例如: