Hadmard product(哈达玛积)

本文解析了哈达玛积的概念,即两个同阶矩阵对应元素相乘的运算法则,通过实例说明其定义和应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

哈达玛积(Hadamard product)是矩阵的一类二元运算,参与运算的两个矩阵要求:

A=(aij)A=(a_{ij})A=(aij)B=(bij)B=(b_{ij})B=(bij)是两个同阶矩阵,则称矩阵AAABBB哈达玛积C=(cij)C=(c_{ij})C=(cij),其中cij=aij×bijc_{ij}=a_{ij}×b_{ij}cij=aij×bij

哈达玛积也称为基本积,以上可以记作A∘B=CA\circ B=CAB=C

可以看到哈达玛积为两个同阶矩阵的对应元素相乘。例如:

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

音程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值