torch.nn.functional.pad

该博客介绍了PyTorch中`torch.nn.functional.pad`函数的使用,用于对张量进行填充。通过案例解释了如何使用pad参数来指定填充的位置和数量,将2*2的张量转换为3*3,并展示了不同填充方式的影响。内容涵盖了填充在图像处理中的应用以及函数的基本用法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


作用

用来对一个tensor进行填充。最典型的就是图片了,原来是2*2的,现在想要变成3*3的,那么就需要填充,此时有很多选择,例如是在原来的右上进行填充还是左下?又或者是左上?等等。

这个函数就可以用来实现这些功能。

torch.nn.functional.pad(input, pad, mode='constant', value=0.0)

我们只关心第二个参数pad,其他不要管。pad是一个元组,格式如下:

(1,1)表示在最后一个维度,前面填充10,后面填充10
(1,0)表示在最后一个维度,前面填充10,后面不填充。
(1,1,1,1)表示最后两个维度都要填充,并且上下左右各填充10.....

下面,我们根据上面举的3个案例进行实战:


实战

import torch
import torch.nn.functional as tnf
x = torch.tensor([[1, 2],[ 3,4]])
print(x)
print(tnf.pad(x,(1,1)))#案例1
print(tnf.pad(x,(1,0)))#案例2
print(tnf.pad(x,(1,1,1,1)))#案例3

在这里插入图片描述
那开头的2*2怎么填充为3*3的图片呢?假设我们在右边和下边各填充1个0,那么就是这样的:

print(x)
print(tnf.pad(x,(0,1,0,1)))

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

音程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值