【AIGC】Clothes 换装

该博客介绍了AIGC在衣物识别和检索方面的进展,包括Deepfashion、ParsingClothing、Simulcap和Tailornet等论文的概要。内容涵盖了衣物分类、属性预测、2D和3D虚拟换衣技术,以及对不同场景下衣物图像的处理。文章还提到了用于体感换衣系统的智能试衣解决方案,并引用了相关研究,如通过单一RGBD相机捕捉人体动态细节的Simulcap方法,以及预测3D衣物形状的Tailornet模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

clothes classification, attribute prediction, clothing item retrieval.

  • clothes have large variations in style, texture, and cutting.
  • clothing items are frequently subject to deformation and occlusion.
  • clothes images often exhibit serous variations when they are taken under different scenarios.

lateast code: https://github.com/levihsu/OOTDiffusion
2D虚拟换衣、体感换衣,竖屏一体机虚拟体感换衣系统,展厅体感换衣,3D试衣软件,体感试衣机,智能试衣

Liu, Ziwei, et al. “Deepfashion: Powering robust clothes recognition and retrieval with rich annotations.” Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.


Paper: Deepfashion

### ComfyUI 换装功能中自动遮罩的实现方法与教程 ComfyUI 是一个基于节点的工作流工具,广泛应用于图像生成和处理任务。在换装功能中,自动遮罩的实现是关键步骤之一,它能够有效分离图像中的前景对象(如人物)与背景,并支持后续的服装替换操作。 #### 自动遮罩的基本原理 自动遮罩的实现通常依赖于深度学习模型,尤其是语义分割模型。这些模型能够根据输入图像自动生成对应的遮罩图,从而精确地定位需要处理的对象区域[^1]。在 ComfyUI 中,用户可以通过加载预训练的分割模型(如 SAM、U-Net 等),结合特定的节点完成遮罩生成任务。 #### 具体实现步骤 以下是 ComfyUI 中实现自动遮罩的核心方法: 1. **加载预训练模型** 使用 `Load Checkpoint` 或 `Load Diffusers Model` 节点加载适合的语义分割模型。例如,SAM(Segment Anything Model)是一个常用的选项,能够生成高质量的遮罩图[^2]。 2. **图像采样与遮罩生成** 将输入图像传递到语义分割模型中,通过 `Image Segmentation` 或类似节点生成遮罩图。此过程会输出一个二值化或灰度化的遮罩图像,表示目标对象的区域[^3]。 3. **调整遮罩参数** 利用 `Mask Adjustment` 或其他相关节点对生成的遮罩进行优化。例如,可以调整遮罩的边界平滑度、填充范围等参数,以确保遮罩的质量满足换装需求[^2]。 4. **合成与换装操作** 将生成的遮罩与原始图像结合,使用 `Image Combine` 或 `Inpainting` 节点完成换装操作。在此过程中,可以加载不同的服装纹理或背景图像,实现多样化的视觉效果[^3]。 #### 示例代码与配置 以下是一个简单的 ComfyUI 工作流配置示例,展示如何实现自动遮罩与换装功能: ```python # 加载分割模型 load_checkpoint = LoadCheckpoint(model_path="path/to/segmentation_model") # 图像采样与遮罩生成 image_segmentation = ImageSegmentation(input_image, model=load_checkpoint) # 遮罩优化 mask_adjustment = MaskAdjustment(mask=image_segmentation.mask, smoothness=0.5, dilation=2) # 换装操作 inpainting = Inpainting(input_image, mask=mask_adjustment, replacement_image="path/to/new_clothes") ``` #### 注意事项 - 确保选择合适的语义分割模型,以适应具体的应用场景。 - 在生成遮罩时,注意调整模型参数以提高精度。 - 对于复杂的换装任务,可能需要结合多个模型和节点以达到最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

路途…

点滴记录

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值