问题描述
有两个仅包含小写英文字母的字符串 A 和 B 。
现在要从字符串 A 中取出 k 个互不重叠的非空子串,然后把这 k 个子串按照其在字符串 A 中出现的顺序依次连接起来得到一个新的字符串。请问有多少种方案可以使得这个新串与字符串 B 相等?
注意:子串取出的位置不同也认为是不同的方案。
输入格式
第一行是三个正整数 n,m,k ,分别表示字符串 A 的长度,字符串 B 的长度,以及问题描述中所提到的 k ,每两个整数之间用一个空格隔开。
第二行包含一个长度为 n 的字符串,表示字符串 A。
第三行包含一个长度为 m 的字符串,表示字符串 B 。
输出格式
一个整数,表示所求方案数。
由于答案可能很大,所以这里要求输出答案对 1000000007 取模的结果。
样例输入
6 3 1
aabaab
aab
样例输出
2
思路分析
一看这道题以为是一个LCS的模板题,后来发现并不一样,但是差别很小,于是想到了dp
第一眼看到这题的时候,想到的DP式子是这样的:
dp[ i ][ j ][ k ]代表A串位置到了 i ,B串到了 j ,已经用了 k 个子串。
自然想到: dp[ i ][ j ][ k ] = dp[ i-1 ][ j-1 ][ k ] + dp[ i-1 ][ j-1 ][ k-1 ]; ( A[i] == B[j] )
即:能匹配时,方案数为:单独使用当前字符为一个子串 + 与前面相连形成一个子串
稍微仔细一想就可以知道,这个DP式子是有问题的。
如果不使用当前字符,情况是什么样的呢?貌似被默默的遗