NOIP2013D2T3-华容道

本文介绍了如何利用编程解决华容道游戏的问题,包括游戏规则、输入输出格式以及思路分析。通过状态表示方法的改变、状态构图和最短路径算法,解决从初始到目标状态所需的最少步数。需要注意的状态编号技巧、数组对应关系和潜在的错误点也在文中提及。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题描述

小 B 最近迷上了华容道,可是他总是要花很长的时间才能完成一次。于是,他想到用编程来完成华容道:给定一种局面, 华容道是否根本就无法完成,如果能完成, 最少需要多少时间。
小 B 玩的华容道与经典的华容道游戏略有不同,游戏规则是这样的:
在一个 n×mn×m 棋盘上有n×mn×m 个格子,其中有且只有一个格子是空白的,其余 n×m1n×m−1 个格子上每个格子上有一个棋子,每个棋子的大小都是 1×11×1的;
有些棋子是固定的,有些棋子则是可以移动的;
任何与空白的格子相邻(有公共的边)的格子上的棋子都可以移动到空白格子上。
游戏的目的是把某个指定位置可以活动的棋子移动到目标位置。
给定一个棋盘,游戏可以玩 q 次,当然,每次棋盘上固定的格子是不会变的, 但是棋盘上空白的格子的初始位置、 指定的可移动的棋子的初始位置和目标位置却可能不同。第 ii 次玩的时候, 空白的格子在第 EXi行第 EYi列,指定的可移动棋子的初始位置为第 SXi行第 SYi列,目标位置为第 TXi行第 TYi列。
假设小 B 每秒钟能进行一次移动棋子的操作,而其他操作的时间都可以忽略不计。请你告诉小 B 每一次游戏所需要的最少时间,或者告诉他不可能完成游戏。
输入格式
第一行有 3 个整数,每两个整数之间用一个空格隔开,依次表示n,m,q ;
接下来的 nn 行描述一个 n×mn×m 的棋盘,每行有 m 个整数,每两个整数之间用一个空格隔开,每个整数描述棋盘上一个格子的状态, 0 表示该格子上的棋子是固定的, 1 表示该格子上的棋子可以移动或者该格子是空白的。
接下来的 q 行,每行包含 66 个整数依次是

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Liukairui

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值