深度学习论文: Multi-modal Sensor Fusion for Auto Driving Perception: A Survey
Multi-modal Sensor Fusion for Auto Driving Perception: A Survey
PDF: https://arxiv.org/pdf/2202.02703.pdf
PyTorch代码: https://github.com/shanglianlm0525/CvPytorch
PyTorch代码: https://github.com/shanglianlm0525/PyTorch-Networks
1 概述
单模态数据(图像或者点云)的感知存在固有的缺陷。例如,摄像机数据主要在前视低位捕获。在更复杂的场景中,物体可能被遮挡,给目标检测和语义分割带来严峻挑战。此外,由于机械结构的限制,激光雷达在不同距离上具有不同的分辨率,并且容易受到极端天气(如雾天和大雨)的影响。尽管两种模态的数据在单独使用时在各个领域都有优秀表现,但激光雷达和摄像机的互补性使得它们的结合可以在感知方面取得更好的性能。
作者对关于自动驾驶中多模态传感器融合论文进行简要综述。同时提出了一种新颖的分类方法,将超过50篇相关论文