深度学习论文: DEIM: DETR with Improved Matching for Fast Convergence
DEIM: DETR with Improved Matching for Fast Convergence
PDF:https://arxiv.org/abs/2412.04234
PyTorch代码: https://github.com/shanglianlm0525/CvPytorch
PyTorch代码: https://github.com/shanglianlm0525/PyTorch-Networks
1 概述
目标检测在自动驾驶和机器人导航等领域至关重要,而YOLO因其速度快和准确性高而成为主流的实时检测工具。然而,YOLO的一对多锚点策略会导致多个重叠的边界框,需要非极大值抑制(NMS)来减少冗余,这增加了计算延迟和不稳定性。
DETR模型通过一对一匹配策略避免了NMS,但它们的慢速收敛和低质量匹配限制了性能。为了解决这些问题,本文提出了一种