LASSO VS GridSearchCV
LASSO
定义
LASSO(Least Absolute Shrinkage and Selection Operator)是一种在统计学和机器学习中常用的回归分析方法。
目的
主要目的是增强模型的预测精度和可解释性,通过对系数进行收缩来实现变量的选择和复杂度的控制。LASSO特别适合于处理具有多重共线性(即输入变量高度相关)或者数据特征数量远大于样本数量的情况。
使用方法
- **数据准备:**首先,你需要准备你的数据集,包括自变量(特征)和因变量(目标变量)。
- **选择模型:**在适用的软件或编程语言(如Python、R等)中选择LASSO回归模型。
- **参数设置:**LASSO的关键参数是正则化参数λ(有时也称为α)。这个参数控制着模型对系数的收缩程度。λ值越大,收缩越强,更多的系数被设置为零,从而实现特征选择。
- **模型训练:**使用你的数据来训练LASSO模型。在这个过程中,模型会学习数据特征和目标变量之间的关系,并决定哪些特征是重要的。
- **交叉验证:**为了找到最佳的λ值,通常需要通过交叉验证来评估不同λ值下模型的性能。
- **模型评估:**一旦选择了最优的λ值,就可以使用这个参数来训练最终模型,并评估其在测试数据集上的性能。
- **解释结果:**最后,你可以解释模型的输出,查看哪些变量被选中,以及它们对预测的贡献程度。
原理
ASSO回归是一种线性回归的形式,它在损失函数中加入了一个正则化项。这个正则化项是系数的绝对值之和,乘以一个调整参数λ。LASSO的目的是最小化以下公式:
其中, y i y_i yi是观测值, x i j x_{ij} xij是特征值, β j \beta_j βj是系数, λ \lambda λ是正则化参数。通过调整λ的值,可以控制正则化的强度。LASSO倾向于将一些系数完全压缩至零,从而实现特征选择。
示例
# 导入必要的库
import numpy as np
from sklearn.linear_model import Lasso
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
# 创建虚构数据集
np.random.seed(0) # 确保可重复性
X = np.random.rand(100