LASSO vs GridSearchCV

本文介绍了LASSO回归方法,强调其在处理高维数据和多重共线性时的优势,以及如何通过调整正则化参数进行特征选择。同时,GridSearchCV被用来自动寻找最佳参数,结合交叉验证确保模型性能的稳健性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LASSO

定义

LASSO(Least Absolute Shrinkage and Selection Operator)是一种在统计学和机器学习中常用的回归分析方法。

目的

主要目的是增强模型的预测精度和可解释性,通过对系数进行收缩来实现变量的选择和复杂度的控制。LASSO特别适合于处理具有多重共线性(即输入变量高度相关)或者数据特征数量远大于样本数量的情况。

使用方法

  1. **数据准备:**首先,你需要准备你的数据集,包括自变量(特征)和因变量(目标变量)。
  2. **选择模型:**在适用的软件或编程语言(如Python、R等)中选择LASSO回归模型。
  3. **参数设置:**LASSO的关键参数是正则化参数λ(有时也称为α)。这个参数控制着模型对系数的收缩程度。λ值越大,收缩越强,更多的系数被设置为零,从而实现特征选择。
  4. **模型训练:**使用你的数据来训练LASSO模型。在这个过程中,模型会学习数据特征和目标变量之间的关系,并决定哪些特征是重要的。
  5. **交叉验证:**为了找到最佳的λ值,通常需要通过交叉验证来评估不同λ值下模型的性能。
  6. **模型评估:**一旦选择了最优的λ值,就可以使用这个参数来训练最终模型,并评估其在测试数据集上的性能。
  7. **解释结果:**最后,你可以解释模型的输出,查看哪些变量被选中,以及它们对预测的贡献程度。

原理

ASSO回归是一种线性回归的形式,它在损失函数中加入了一个正则化项。这个正则化项是系数的绝对值之和,乘以一个调整参数λ。LASSO的目的是最小化以下公式:
在这里插入图片描述
其中, y i y_i yi是观测值, x i j x_{ij} xij是特征值, β j \beta_j βj是系数, λ \lambda λ是正则化参数。通过调整λ的值,可以控制正则化的强度。LASSO倾向于将一些系数完全压缩至零,从而实现特征选择。

示例

# 导入必要的库
import numpy as np
from sklearn.linear_model import Lasso
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error

# 创建虚构数据集
np.random.seed(0)  # 确保可重复性
X = np.random.rand(100
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

trust Tomorrow

感谢支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值