目录
Numpy
Numpy全称Numerical Python。它提供了2种基本的对象:ndarray与ufunc。
ndarray是存储单一数据的多维数组,它相对于list列表可以快速的节省空间,提供数组化的算数运算和高级的广播功能。
ufunc是能够对数组进行处理的函数,这些标准的数学函数对整个数组的数据进行快速运算,且不需要编写循环。
Numpy其他优点:
- 它是读取/写入磁盘上的阵列数据和操作存储器映像文件的工具
- 它具有线性代数、随机数生成以及傅里叶变换的能力
- 它集成了C、C++、Fortran代码的工具
虽然Numpy库具有很多的优点,但是其默认不在标准库中,如果你直接安装anaconda,它会自带Numpy库。
但是,如果你是直接安装的Python工具,那么需要通过如下命令安装之后才能使用,具体命令如下所示:
pip install numpy
下面,我们详细介绍Numpy库的使用方式。
生成Numpy数组
从已有数据中创建数组
一般来说,对于一些基础的数据,我们在Python中都是直接使用list。
而如果这个时候,需要进行大量的运算,我们不妨将list列表转换为numpy数组进行计算。转换的方式如下所示(我们使用numpy时一般将其重命名np使用):
import numpy as np
list1 = [1, 2, 3, 4, 5, 6, 7, 8, 9]
nd = np.array(list1)
print("数据:", nd)
print("类型:", type(nd))
运行之后,效果如下:
通过random生成数组
在深度学习中,我们经常会通过随机数创建一些数组进行测试,比如创建符合正态分布的随机数,又或者打乱数据等等。
而这些都可以通过numpy.random模块进行操作。下面,博主列出了一个常用随机函数表格:
函数 | 意义 |
---|---|
numpy.random.random | 生成0到1之间的随机数 |
numpy.random.uniform | 生成均匀分布的随机数 |
numpy.random.randn | 生成标准正态分布的随机数 |
numpy.random.randint | 生成随机整数 |
numpy.random.normal | 生成正态分布 |
numpy.random.shuffle | 随机打乱顺序 |
numpy.random.seed 设置随机数种子 | |
numpy.random.random_sample | 生成随机的浮点数 |
下面,我们举一个简单的使用例子:
import numpy as np
#生成3行3列0到1的随机数
nd1 = np.random.random([3, 3])
print(nd1)
#生成3行3列0到1的浮点数
nd2 = np.random.random_sample([3, 3])
print(nd2)
#打乱nd2的数据
np.random.shuffle(nd2)
print(nd2)
运行之后,效果如下:
创建多维数组
在上面随机数的数组创建中,我们看到了其实numpy可以创建多维数组,而如果不使用随机数的话,我们还可以通过下面表格的函数创建numpy数组。
函数 | 意义 |
---|---|
np.zeros((3,4)) | 创建3行4列全部为0的数组 |
np.ones((3,4)) | 创建3行4列全部为1的数组 |
np.empty((2,4)) | 创建2行4列的空数组,空数组中的值并不为0,而是为初始化的垃圾值 |
np.zeros_like(nd) | 以nd相同的维度创建一个全为0的数组 |
np.ones_like(nd) | 以nd相同的维度创建一个全为1的数组 |
np.empty_like(nd) | 以nd相同的维度创建空数组 |
np.eye(5) | 创建一个5*5的矩阵,对角线为1,其余为0 |
np.full((2,2),111) | 创建一个2行2列全是111的数组,第2个参数为指定值 |
下面,我们随机举些列子:
import numpy as np
#创建2*3的空数组
nd1 = np.empty((2, 3))
print("垃圾值:", nd1)
#创建5*5,值全为111的数组
nd2 = np.full((5, 5), 111)
print(nd2)
#创建5*5值全为0的数组
nd3 = np.zeros((5, 5))
print(nd3)