结构化RAG究竟是什么?
让我详细地给你全面介绍一下。
普通检索增强生成(RAG)和结构化检索增强生成(RAG)之间的区别是理念上的根本转变。
普通的检索增强生成(RAG)基于“共鸣”(语义相似性)运行。 这就好比询问一位知识渊博、热情洋溢的朋友,他对某个主题的每本书都进行了快速阅读。它使用向量嵌入来查找在高维空间中具有相似 几何 位置的文本块。它能理解“主旨”,对于探索性问题表现出色。但它对邻近性的依赖意味着它很容易将细微差别与噪声混淆。
结构化检索增强生成(Structured RAG)基于“逻辑”(符号表示)运行。 这就好比在一座图书馆里,让一位法律专家站在证人席上,而馆内每一本书都经过了精心的交叉引用。这位专家并不关心 “语义感知”。他们基于由事实、实体、行为以及它们之间明确关系构建的知识图谱进行工作。它回答问题的方式,不是寻找 相近的内容,而是基于逻辑查询找出 真实的内容。