大部分时间你是需要融合结构化数据的检索增强生成(RAG)

结构化RAG究竟是什么?

在这里插入图片描述

让我详细地给你全面介绍一下。

None

普通检索增强生成(RAG)和结构化检索增强生成(RAG)之间的区别是理念上的根本转变。

普通的检索增强生成(RAG)基于“共鸣”(语义相似性)运行。 这就好比询问一位知识渊博、热情洋溢的朋友,他对某个主题的每本书都进行了快速阅读。它使用向量嵌入来查找在高维空间中具有相似 几何 位置的文本块。它能理解“主旨”,对于探索性问题表现出色。但它对邻近性的依赖意味着它很容易将细微差别与噪声混淆。

结构化检索增强生成(Structured RAG)基于“逻辑”(符号表示)运行。 这就好比在一座图书馆里,让一位法律专家站在证人席上,而馆内每一本书都经过了精心的交叉引用。这位专家并不关心 “语义感知”。他们基于由事实、实体、行为以及它们之间明确关系构建的知识图谱进行工作。它回答问题的方式,不是寻找 相近的内容,而是基于逻辑查询找出 真实的内容

深入探究结构化检索增强生成(RAG)流程

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI仙人掌

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值