在人工智能(尤其是大型语言模型)领域,语境工程(Context Engineering)和提示工程(Prompt Engineering)是两个高频出现的术语。两者对于从AI系统中获取最佳结果都至关重要,但它们的目的不同,所涉及的方法也存在显著差异。本文将详细解读这两个概念的含义、应用场景、实例、相互关系、实施不当的后果、优势,以及它们如何相互补充。我们还将探讨在不同场景下应优先考虑哪一种技术,并用通俗易懂的语言、实例来进行说明。
什么是提示工程?
提示工程是设计和构建给AI模型的输入(提示)以获得期望输出的过程。可以把它看作是以一种能确保AI准确理解你需求的方式提出问题,就像给一个非常聪明的助手下达清晰的指令。
提示工程的实例
想象你正在使用AI写一个故事。像“写一个故事”这样模糊的提示可能只会得到一个平淡无奇的故事。相反,一个精心设计的提示可以是: “写一篇500字的奇幻故事,讲述一个勇敢的小女孩发现了一片隐藏的魔法森林,遇到了一只会说话的狼,并得知自己注定要从诅咒中拯救村庄。” 这个提示非常具体,提供了关于类型、角色、场景和情节的细节,能帮助AI生成一个重点突出且紧扣主题的故事。
提示工程的关键方面
-
清晰度:提示应该清晰明确,没有歧义。
-
具体性:包含细节以引导AI朝着期望的输出方向发展。
-
结构性:使用格式(如项目符号、示例)使指令易于遵循。
-
迭代性:根据AI的响应测试并优化提示。
什么是语境工程?
语境工程是关于精心挑选和构建AI模型用于理解任务或生成响应的背景信息或数据。它涉及在处理提示之前设置模型所依赖的环境、数据集或附加信息。可以把它看作是在A