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Abstract

Synthetic data has become a cornerstone for scaling large language models, yet its multilingual use
remains bottlenecked by translation-based prompts. This strategy inherits English-centric framing and
style and neglects cultural dimensions, ultimately constraining model generalization. We argue that the
overlooked prompt space—the very inputs that define training distributions—offers a more powerful lever
for improving multilingual performance. We introduce a lightweight framework for prompt-space opti-
mization, where translated prompts are systematically transformed for Naturalness, Cultural Adaptation,
and Difficulty Enhancement. Using an off-the-shelf multilingual LLM, we apply these transformations to
prompts for 12 languages spanning 7 families. Under identical data conditions, our approaches achieve
substantial and consistent downstream improvements over the translation-only baseline: +4.7% on
Global-MMLU accuracy, +2.4% on Flores XCometXL and +35.3% wins in preferences on mArenaHard.
We establish prompt-space optimization as a simple yet powerful paradigm for building multilingual

LLMs that are more robust, culturally grounded, and globally capable.

1 Introduction

The field of synthetic data generation has largely operated under a generation-focused paradigm:
given existing prompts, optimize the quality of the generated completions [Long et al., 2024; Liu
et al., 2024], via e.g. targeted filtering |Grattafiori et al., 2024; Shimabucoro et al., 2024], test-
time scaling [Muennighoff et al., 2025]. However, this paradigm implicitly inherits the limitations
of the prompt distribution: completions are only as diverse and representative as the inputs they
are conditioned on, and numerous studies show that prompts themselves can often be noisy or low
quality leading synthetic data to reinforce these deficiencies rather than systematically broadening
the training distribution [Schreiter, 2025; He et al., 2024].

This challenge is especially acute in the multilingual setting, where translation-based prompt ex-
pansion dominates instruction tuning [Ustiin et al., 2024; Dang et al., 2024; Chen et al., 2024;
Martins et al., 2025]. While effective for scaling coverage, translations introduce artifacts such as
unnatural phrasing (translationese) |[Lembersky et al., 2012; Eetemadi & Toutanova, 2014], lexical
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Figure 1: Prompt transformations consistently improve over translations: Comparison of translated
model and our most well-rounded method ( Cultural+ Difficulty Mix) across different multilingual benchmarks.
mArenaHard and Polywrite win-rates are in direct comparison between the two models.

errors, or shifts in toxicity [Ermis et al., 2024]. Even high-quality translations project the seman-
tics of the original English prompt into another language, but rarely adapt content for cultural
relevance [Enomoto et al., 2025].

This perpetuates an English-centric perspective: models are optimized for many target languages,
but still trained on prompts that reflect the needs, assumptions, and discourse patterns of En-
glish speakers. Prior work shows that this mismatch has measurable downstream effects on both
generation quality and fairness [Li et al., 2025].

We argue that addressing these limitations requires a shift in focus: not only improving completions,
but optimizing the distribution of input prompts itself. In this paper, we introduce a prompt-
focused paradigm for synthetic data generation, where translated prompts are systematically
transformed along three critical dimensions: Naturalness, Cultural Adaptation, and Difficulty En-
hancement. By treating prompts as dynamic components rather than fixed scaffolds, we directly
reshape the input distribution, reducing translation artifacts and embedding inductive biases that
are better aligned with real user data, see Figure 2 for an example.

We evaluate this approach across 12 languages spanning diverse families. Starting from translated
English prompts, we apply targeted prompt-space transformations using a strong teacher LLM, and
measure their impact both on the data itself and on downstream performance. Our data evaluations
confirm that our prompt transformations successfully improve quality along the targeted
dimensions: Naturalness increases lexical diversity, Cultural Adaptation enhances fluency, and the
Difficulty Enhancement transformation raises both difficulty and overall quality (though at the cost
of diversity) when compared to translated prompts. When combined, these transformations produce
a well-rounded prompt distribution. These prompt-side improvements carry over to completions
where even small interventions in the prompts lead to substantial changes in completions
(table 2), improving their fluency, diversity, and difficulty. Downstream (fig. 1), when used for fine-
tuning a 7B base model, these effects yield strong and consistent improvements across all
languages and a diverse set of benchmarks (mathematical reasoning, translation, language
and culture understanding, open-ended generation) with particularly pronounced gains on open-
ended tasks, our best proxies for real human use.
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Figure 2: Illustration of our prompt transformations on a representative toy example that gets adapted
for German: Each transformation modifies the original English prompt, with major modifications highlighted
in bold. Modifications to the prompt cause changes in the generation as well, so by making the prompt more
natural by using the German term “Erntedankfest” rather than the English “Thanksgiving”, the completion
now lists typical German rather than American Thanksgiving dishes (“bread, fruit, pumpkin, potato dishes”).
The Cultural Adaptationfurther localizes the prompt (“in Germany”) and replaces the event of Thanksgiving
with the event of Christmas, which has larger significance in German culture. The Difficulty transformation
yields a prompt that requests a shopping list for side dishes of Thanksgiving, making it more specific but also
more complex. Full examples of prompt transformations and their corresponding completions that were used
for our experiments are in Table 9.

Overall, this paradigm shift from optimizing only in the generation space to optimizing in the prompt
space represents a fundamental evolution in how we approach multilingual data creation. As our
experiments show, bootstrapping fine-tuning data from translations via targeted transformations
has a tremendous impact on the state of language modeling especially languages that are typically
overlooked in LLM development.

2 Method

Existing synthetic data pipelines primarily expand P(y | z), the conditional mapping from prompts
to completions, while implicitly assuming that the input prompt distribution P(z) is fixed. This
generation-focused view limits diversity and cultural grounding: completions remain tied to the
artifacts, biases, and topical scope of the original prompts, especially when these are machine-
translated from English. We instead intervene directly on the input distribution P(z), introducing
an inductive bias toward more natural, contextually grounded, and linguistically rich prompts.
This prompt-focused perspective reframes synthetic data generation as optimization in the prompt
space, not just in the generation space.

2.1 Problem Setup

Let Py (x) denote the distribution of prompts in a high-resource source language (e.g., English). We
yield a corresponding target-language distribution Py ¢(x) for each language ¢ through translation:

"8 ~ Pirg ¢ = translate(Pyc).

While this step expands coverage, it does not adapt content to the linguistic or cultural norms of
the target language. We therefore introduce a lightweight transformation operator 7 that refines



translated prompts:
$opt — T(xtrg)’ xopt ~ Popt.s-

The resulting optimized distribution Pyt ¢ replaces Pq ¢ as the input space for training, giving rise
to

Ptrain,é(xa y) = Popt,f($> Pteacher(y ‘ (E)

In this setup, any shift in P, ¢ directly influences the inductive bias of the fine-tuned model,
altering not only what it learns to say (P(y | x)), but also what it learns to understand.

2.2 Transformation Operators

We instantiate 7 as a family of modular operators 7 = {Tnat, Tcult, Taift}, each targeting a distinct
dimension of prompt quality:

e Naturalness (7,at): Removes translation artifacts and restores idiomatic phrasing to better
reflect authentic language use.

e Cultural adaptation (7..): Recontextualizes prompts to locally relevant examples, values,
and references, aligning them with cultural norms.

e Difficulty enhancement (73i¢): Increases task complexity by expanding or reformulating prompts
into more challenging, multi-step instructions.

Each transformation produces a valid optimized prompt distribution Py ¢; in practice, these oper-
ators can be applied individually or in sequence (e.g., Naturalness followed by Cultural Adaptation).
Each operator shifts Py ¢ closer to the true user distribution P, improving both data quality and
downstream generalization.

Our approach extends synthetic data generation beyond completions by explicitly optimizing the
input side of the data distribution. This simple but general formulation allows multilingual models to
learn from richer, more representative prompts—enhancing linguistic diversity, cultural grounding,
and ultimately, model generalization.

2.3 Prompt Tuning

Each transformation 7T is executed with an LLM. At the core of the transformation is a prompt
that specifies which context and input (e.g. user prompt, original English prompt, target language)
is included in the transformation, its description and some additional guidelines (the exact prompt
templates are given in table 8). These were improved over a few iterations via manual data in-
spection, but they can be further customized for desired domains. We kept the prompts relatively
simple as overly rigid guidelines risk reducing diversity, making outputs feel templated, limiting
generalization and correctness, especially in underrepresented languages where the teacher model
may already struggle with instruction following and hallucinate more easily.

3 Experiments

We set up a multilingual fine-tuning pipeline where the primary goal is to improve quality and
performance in various tasks, with special focus on naturalness and fluency of open-ended genera-
tions, cultural adequacy and accuracy in challenging domains that typically show strong language



Language Script Lang. Family Resources Prompt Translation Quality

(code) Institutional/Data  Expert Gemma
German (de) Latn IE / Germanic high, 5 93.96 92.49
Spanish (es) Latn IE / Ttalic high, 5 89.15 86.40
Czech (cs) Latn IE / Balto-Slavic high, 4 86.00 82.03
Ukrainian (uk) Cyrl IE / Balto-Slavic high, 4 82.23 79.51
Greek (el) Grek  IE / Greek high, 3 83.86 80.78
*xHungarian (hu) Latn Uralic / Finnic high, 4 83.61 78.88
*Slovak (sk) Latn IE / Balto-Slavic high, 3 85.71 81.36
*Croatian (hr) Latn IE / Balto-Slavic high, 3 79.91 78.86
*Lithuanian (It) Latn IE / Balto-Slavic high, 3 84.11 82.40
*Latvian (1v) Latn IE / Balto-Slavic high, 3 69.65 73.18
*Basque (eu) Latn Basque mid, 4 66.01 70.19
*Welsh (cy) Latn IE / Celtic mid, 3 73.75 68.30
Avg 81.04 79.53

Table 1: Language Overview: We characterize the languages of study in terms of resourcedness with respect
to data availability with levels (1-5) (Data), and whether they are mid or high-institutional in terms of vitality
according to Ethnologue (Institutional), both sourced from [Ranathunga & de Silva, 2022]. We also report
prompt translation quality (XCometXL [Guerreiro et al., 2024], reference-free) of the prompt translation model
(Ezpert, in-house expert model) and the transformation model (GEMMA3-27B-1T) on a 1k sub-sample of our
prompts. Languages marked with x are not officially supported in the base model. IE: Indo-European.

disparities. The setup aims to make the impact of each of our transformations measurable, first in
the resulting data, and then further in downstream performance of the model.

3.1 Data Processing Pipeline
3.1.1 English Seed Prompts

We collect real prompts from users around the world (with consent and without PII), similar to e.g.,
ShareGPT.! Because the prompts are noisy, we apply content filtering and language identification
filtering with FastText [Joulin et al., 2016a;b]| to extract a pool of 280k English prompts. This pool
of prompts is attractive for modeling because these are unseen samples of real-life use of state-of-
the-art models, and thereby provide an excellent learning opportunity.

3.1.2 Prompt Translation into Target Languages

We take distinct 10k sub-samples from the English pool of prompts and automatically translate
them into 12 target languages (German, Spanish, Czech, Ukrainian, Greek, Hungarian, Slovak,
Croatian, Lithuanian, Latvian, Basque, Welsh), listed in table 6, using an in-house state-of-the-art
translation expert LLM.

While geographically close (all spoken in Europe), these languages cover seven language families
(including one isolate, Basque) and three scripts. They are standardized and have mid to high insti-
tutional support [Bird, 2022], but vary in terms of their availability of accessible, high-quality data,
representation on the web and in NLP research, and support in open LLMs |[Ranathunga & de Silva,
2022]. As a result, the translation capabilities of our expert translation model varies, yielding top
quality e.g. for German, Spanish and Czech, but much poorer quality e.g. for Latvian, Basque
and Welsh. The translation quality on our domain of user-submitted prompts is overall slightly

"https://huggingface.co/datasets/OpenGVLab/ShareGPT-40
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lower (but also harder to estimate), due to challenging inputs like code or non-standard language.
Nevertheless, we assume that for this selection of languages, bootstrapping with translation and
transformation is feasible, and it lets us study our proposed methods on a diverse spectrum.

3.1.3 Prompt Optimization

We choose GEMMA3-27B-1T? as our transformation model for its broad language support and
strong multilingual performance [Team et al.]. The translation evaluation in table 1 may also serve
as a loose proxy for understanding the generative capabilities of the model in each language [Ustiin
et al., 2024] (more in table 6): We expect highest-quality outputs for German, Spanish and Czech,
and lowest-quality outputs for Latvian, Basque and Welsh. For each transformation described in
section 2, we prompt it with the respective custom instruction and sample a single generation
with a temperature of 0.3. Importantly, we apply the Naturalness transformation directly to the
translated prompts, but for the Cultural Adaptation and Difficulty Enhancement transformations,
we apply them on top of the Naturalness-transformed prompts. This decision is based on our
initial experiments, which showed that the Naturalness transformation provides a mild, generally
beneficial adjustment that does not interfere with the other two. After transforming the prompts,
we run FastText’s language identification model and drop the prompts that do not correspond to
the target language to prevent language confusion downstream |[Marchisio et al., 2024].

3.1.4 Prompt Completions

To generate completions, we rely on a teacher model that provides responses to the prompts without
any additional instructions. For this purpose, we use the same model as our transformation model,
Gemma3-27B-IT.? For each prompt, we sample a single generation with a temperature of 0.3. To
ensure that outputs are produced in the intended language, we once again run language identification
and discard mismatches (the final number of samples for each language can be found in table 7). We
adopt this simple completion generation setup in order to cleanly isolate the effect of our prompt
interventions.

3.2 Fine-Tuning
3.2.1 Base Model

We use the base version of CommandR7B,* an open weights 7B open-weights model pre-trained on
the following 23 languages: English, French, Spanish, Italian, German, Portuguese, Japanese, Ko-
rean, Arabic, Chinese, Russian, Polish, Turkish, Vietnamese, Dutch, Czech, Indonesian, Ukrainian,
Romanian, Greek, Hindi, Hebrew, and Persian. Only five of these languages overlap with our target
languages (see table 6), which enables us to study the effectiveness of our transformation tech-
niques in expanding the language coverage of LLMs during post-training (section 4.3). Supervised
fine-tuning (SFT) follows a standard procedure, details described in section F.

3.2.2 Data Mixture

We consider four main datasets, one for each of the transformations described in section 2 and an
additional one where we mix 50% of Culturally Adapted data and 50% of the Difficulty Enhanced

2https://huggingface.co/google/gemma-3-27b-it
3In principle both models do not need to be identical, it is a choice of convenience.
“https://docs.cohere.com/docs/command-r7b
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Length Rel. Dist. Perplexity] Diversity! Difficulty? Quality?
Transformation P C P C P C P C p C P C

Translated 406 2451 - - 1534 246 088 0.77 1.78 1.77 3.21 4.78
Naturalized 397 2490 024 0.64 1406 248 0.90 077 1.76 1.75 3.26 4.81
Cultural 470 2352 0.30 0.67 1211 251 089 0.79 1.76 1.76 3.28 4.82
Difficulty 1936 5322 0.86 0.81 3.13 2.15 0.77 076 2.44 2.45 4.50 4.83

Cultural + Diff. 1205 3873 0.58 0.74 452 227 082 077 197 210 3.75 4.76

Table 2: Comparison of text metrics for Prompts (P) and Completions (C). Lower perplexity and higher
diversity (N-gram measurement), difficulty, and quality are better. Computed on a sample of 1000 prompts
per language.

data. We complement our datasets with a portion of other standard instruction tuning datasets
(mostly English) in order to reduce overfitting, these include domains like math, code, reasoning but
also multilingual datasets (for the 23 languages supported by the base model). In total, each of our
four data mixtures contains roughly 590k examples, around 48% of which are contributed by our
prompt transformations. Table 7 contains the detailed counts for each language and transformation.
They differ slightly due to language identification filtering.

3.3 Evaluation

In evaluation, our primary question throughout will be how our transformations compare against
the current go-to strategy of prompt translation. We compare this in two stages: at the data level,
and in downstream evaluations.

3.3.1 Data Evaluations

We evaluate the textual characteristics of both prompts and completions using a combination of
standard metrics and LLM-based scores. First, we measure how much the prompts and generations
have changed in comparison to their translated counterparts at the surface level, using relative
edit distance (Levenshtein distance normalized by the maximum length) and length in characters.
To assess diversity, we compute corpus n-gram diversity at the language level by tokenizing the
texts using spaCy” and then computing the ratio of unique n-grams to total n-grams [Padmakumar
& He, 2024; Shaib et al., 2025]. To assess naturalness, we use GEMMA3-27B-PT to compute the
perplexity of each text. Previous works have used target language model perplexity as a metric
for translationese [Bizzoni & Lapshinova-Koltunski, 2021; Li et al., 2025]. To assess quality and
difficulty, we rely on automatic scoring by prompting an LLM (GEMMA3-27B-IT) to score the texts
on a discrete scale (prompts included in section G.3). These measures allow us to directly test
whether our transformations succeed in eliciting more desirable textual features which are key to
steering downstream performance [Shimabucoro et al., 2024].

3.3.2 Downstream evaluations

Discriminative benchmarks. Our suite covers two discriminative tasks, formalized as multi-
choice tasks: Include44 [Romanou et al., 2024|, with questions from local academic and professional
exams written in target languages, and Global-MMLU (G-MMLU) [Singh et al., 2025] with trans-
lated QA tasks from English. We expect that these tasks can help us measure language disparities
in knowledge access, especially for those questions that are culture-specific. Implementation details

Shttps://spacy.io/
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. Flores G-MMLU Include44 MGSM mArenaHard PolyWrite
Prompts in FT

xCometXL 1 Accuracy 1 Win-rate % 1
Translated 0.786 52.5 47.0 56.2 — —
Naturalized 0.791 53.1 46.9 56.5 57.7 63.8
Cultural 0.805 57.9 50.8 66.0 65.7 66.1
Difficulty 0.816 54.5 51.2 65.1 61.8 64.6
" Cultural + Diff. 0810 57.2 51.8  67.3 67.7 66.9

Table 3: Downstream Results: Performance across multiple evaluation benchmarks. Scores correspond to
XCometXL (Flores), Accuracy (G-MMLU, Include44, MGSM) and win-rate percentage against Translated
model (mArenaHard, PolyWrite). Highest scores is marked in bold. Results for individual languages in sec-
tion H.4.

are described in section G.

Close-ended generative benchmarks. For these benchmarks, there exist gold standard outputs
which quality can be measured against. This is interesting because it allows us to precisely track
quality improvements (as in discriminative benchmarks), but also captures the quality of more than
one output tokens (as opposed to discriminative benchmarks). We choose the Flores translation
task [Team et al., 2022| for its wide language coverage, and MGSM [Shi et al., 2023| as a challenging
math task. For MGSM, we extend the original language coverage by adding translated versions,
which we refer to as MGSM++. The Basque translations were released in IberoBench [Baucells
et al., 2025],% Greek curated by ILSP/Athena RC,”, Welsh released by Language Technologies team
from Bangor University,” Czech, Hungarian as curated for BenchMAX [Huang et al., 2025].”

Open-ended generative benchmarks. Our primary target are the following two benchmarks
that capture open-ended generation quality:'’ m-ArenaHard v2.0 [Khairi et al., 2025b] is a collection
of challenging LMArena prompts [Zheng et al., 2024] that was translated into 23 languages. It
contains prompts from a wide range of domains, but especially code and math—which we assume,
are challenging especially where base performance is low. We extend the set of support languages to
include our missing ones, by translating the prompts from English (and apply language filtering to
the prompts), forming mArenaHard++ v2.0 (the same procedure as for the original mArenaHard-
v2.0). Performance is measure with win rates (percentage of wins) in pairwise comparisons against a
competitor model as judged by GPT-4.1 (GPT-4.1-2025-04-14).!! To capture language naturalness
better (ill-defined on code and math), we compare our models on creative writing prompts from
the PolyWrite benchmark [Ji et al., 2024], where we additionally compute win-rates with a judge
prompt that evaluates the naturalness of completions, and evaluate the diversity of the generations
with self-BLEU [Zhu et al., 2018; Ji et al., 2024].

Language coverage. Although not all target languages are covered in GlobalMMLU, Include44
and MGSM++, each language is represented in at least one of them, while all being included in the
remaining, see table 3. We only evaluate the models for our focus languages (plus English, where
available), and report averages (plus breakdowns in the appendix).

Shttps://huggingface.co/datasets/HiTZ/MGSM- eu

"https://huggingface.co/datasets/ilsp/mgsm_greek

8https://huggingface.co/datasets/techiaith/mgsm_cy

Shttps://huggingface.co/datasets/LLaMAX/BenchMAX_Math

19Prior work found discriminative benchmarks not indicative enough for generative performance [Ustiin et al.,
2024].

Yhttps://platform.openai.com/docs/models/gpt-4.1
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SeltBLEU, NWR{ LPRt

Translated 33.73 — 97.6
Naturalized 30.01 57.1 97.3
Cultural 32.65 63.7 97.5
Difficulty 3401 69.3 973
Cultural + Diff. 29.77 66.6 97.9

Table 4: Downstream quality on PolyWrite with auxiliary metrics for diversity (Self~-BLEU), naturalness
win-rates (NWR, against Translated model under an LLM judge specialized on naturalness) and language
confusion (Line Pass Rate, LPR).

4 Results
4.1 Data Quality

4.1.1 Prompt Quality

Table 2 confirms that our transformations advance the quality of the prompts (“P” columns) over
the original translated prompts along all dimensions, in terms of diversity, fluency, and also gen-
eral quality and difficulty. The Naturalness transformation achieves the greatest n-gram diversity,
which confirms that it re-introduces linguistic richness that might have gotten lost in translation.
The Cultural Adaptation transformation lowers perplexity the most, showing that it is most closely
aligned to the target-language content that the base model has seen during pretraining. The Diffi-
culty transformation is the most aggressive transformation, as its edit distance from the translated
prompts is more than 3x higher than the other transformations. It also increases the prompt length
by an average factor of 4.8x. We manually inspect a subset of these prompts and find that the
Difficulty transformation typically introduces additional constraints, which are similar in template
across data points, consequently lowering the diversity. Our LLM judge also considers these prompts
as of substantially higher quality (and obviously difficulty) than the naturalized or cultural ones.
We thus expect the largest impact on generations and downstream from this transformation. When
mixing difficulty and cultural data, we obtain scores in between both individual transformations,
which, compared to difficulty alone, raises n-gram diversity, but lowers the other metrics.

4.1.2 Completion Quality

Although the changes introduced in the prompts for the Naturalness and Cultural adaptation trans-
formations are relatively small, the resulting completions differ substantially from those produced
by the translated model (around 2x higher edit distance), as shown in table 2, “C” columns. This
suggests that even minor adjustments on the prompt side can lead to large shifts in completions.
Notably, completions from the difficulty model are, on average, 2.2x longer than those from the
translated model, i.e. yielding twice as many target-language tokens to train on. The effects of the
individual transformations and the data mix overall correspond to the changes brought about in
the prompt space.

We expected generations after the Naturalness transformation to have a lower perplexity as a result
of being more natural [Li et al., 2025], but this is not indicated by the metric. One confounding
factor might be that the perplexity scoring model is the pretrained model for our teacher model,
which might bias the model towards prompts more that it has altered more. We next ask whether
intervening on the prompts themselves induces greater naturalness in model responses.



4.2 Downstream Performance

Table 3 summarizes the performance of the fine-tuned model across tasks, averaged across languages.
We report a detailed language breakdown in section H.4. In general, our transformations beat
the translation-only baseline for all tasks and languages. We see surprisingly big differences in
benchmark scores, given that we only exchanged max 10k prompts per language between variants.

Beyond translationese. We can see that the Naturalness transformation, that is focused on in-
creasing fluency and removing translation artifacts, brings only marginal gains on most benchmarks
compared to the transformations that modify the content and domain of the prompts more.'? This
highlights the importance of going beyond translation: even if prompts were translated perfectly,
their utility is limited by their content that is less relevant in other languages and cultures. Though,
the naturalness transformation shines the most in open ended generation tasks: in mArenaHard it
wins over the translated model by 7.7% and even more in PolyWrite, which is focused on created
writing, winning by 13.8%.

Cultural adaptation. The gains in G-MMLU and Include44 by 5.4% (highest score overall) and
3.8%, respectively, show that the cultural grounding of the prompts indeed helps for downstream
knowledge retrieval in culturally relevant tasks. This reflects directly in the score of the cultural-
sensitive subset of G-MMLU (table 15), where this transformation provides a 7% improvement,
compared to 2% for cultural-agnostic questions.

It also has beneficial effects on translation, math (+9.8% accuracy wins over naturalized) and open-
ended generation quality (e.g. +8% win-rate on mArenaHard over naturalized prompts, especially
high for Ukrainian and Slovak). Interestingly, the Difficulty transformation also brings similar gains
on Include44, which by closer inspection comes from questions in domains (see table 14) centered
around business, which likely have well-defined constraints and are more difficult in nature.

The importance of difficulty. The Difficulty transformation, being most aggressive, also brings
the overall largest benefits. It appears important for mathematical reasoning, as shown by the
+8.6% gains over only naturalized prompts. But more so in machine translation, achieving a
notable improvement of +3.0 XCometXL points."?

Combining complementary strengths. We have seen that Cultural adaptation and Difficulty
transformations appear sometimes orthogonal in their benefits to tasks like G-MMLU, mArenaHard,
and PolyWrite. By mixing their data, taking 50% each, we hope to achieve the best of both worlds.
For MGSM and Include44, where they individually score similarly strong, the gains add up to
yield the best performance overall. For open-ended generation (mArenaHard and PolyWrite), the
combined mix also scores highest, yielding an average win rate of 67.7% and 66.9% over translated
prompts respectively. For the remaining tasks, the mix scores in between both, making this variant
the overall most well-rounded model. Future work may explore combinations through model merging
rather than data mixing [Aakanksha et al., 2024].

4.3 Analysis

12Table 10 shows that for some languages (cs, el, It, eu, hu) this can be considered an improvement in
translation quality, but the prompt is not strictly tied to post-editing.

3The 3.0 gain in XCometXL scores is estimated to be 95.3% accurately aligned with humans [Kocmi et al.,
2024].
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Figure 3: Translation performance on Flores by language (grouped by those supported in pretraining vs
others), compared also against the teacher model.

4.3.1 What matters for quality?

In table 4 we break down multiple aspects of quality on the PolyWrite benchmark: diversity, natural-
ness and the ability to respond in the correct target language. We can see that our transformations
improve over the translated variant in all aspects: downstream outputs are more natural, diverse
and more likely in the right language. Similar to our prompt analysis we observe that diversity does
not increase after Naturalness transformation, but naturalness, as determined by an LLM judge,
further increases. Due to our language id filtering, language confusion is rare across the bench but
lowest in the mixed approach.

4.3.2 How does language support and resourcedness affect performance?

Naturally languages supported during pre-training show higher performance compared to those that
were not supported (indicated in table 6), e.g. on Flores the average Translated baseline performance
(fig. 3) already diverges by 16.6 points in XCometXL between supported and unsupported languages
(more details in table 16). However, our transformations significantly improve both groups relative
to the baseline, the unsupported even more—by an average of +3.3 points (achieved by the Difficulty
model)—than the supported ones (+2.6 points on average).14 This is consistent with mArenaHard
as well with +5.7 over Naturalized for unsupported compared to +3.6 for supported) underlining
the effectiveness of prompt optimization especially for cases of language expansion and under-served
languages.

4.3.3 Performance on Lowest-Resource Languages

Our method depends on the performance of the translation model and teacher model. It is not well
understood where the trade-off between noise and scale lie for synthetic data generation. In our
study, there are very few cases where individual transformations did not yield downstream improve-
ments over translations for individual languages. We particularly inspect the lowest-resource ones in
Figure 4: For MGSM, we find that for Basque and Welsh, the Naturalness transformation performs
worse than direct translation, but the other transformations succeed in improving over it, similar

' According to [Kocmi et al., 2024], this difference estimated to be 95.2% accuracy with human preferences.
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Figure 4: Performance on lowest-resource languages Welsh (cy), Basque (eu) and Latvian (Iv) across three
tasks. Win Rates are in comparison with the Translated baseline.

Win-rate % Completion Length

Ours Qwen  Ours Qwen
mArenaHard 56.8 43.2 5281 2548
PolyWrite 88.4 116 3364 2208

Table 5: Open Ended Win-Rates against QWEN2.5-7B Averaged win-rates and completion lengths across
languages from direct comparisons of the Cultural+Difficulty model against QWEN2.5-7B on mArenaHard and
PolyWrite.

as for Welsh or Croatian in WMT (fig. 3). On the other hand, for mArenaHard, our overall best
approach (Cultural+Difficulty) yields substantial improvements over the light Naturalness transfor-
mation for these languages. However, for PolyWrite, it has less benefits: it improves performance
for Welsh and Latvian but does not give any gains over the Naturalness transformation in Basque;
in other words: the data characteristics that we shape with this additional transformation seem not
to deciding the win rate metric on PolyWrite for these lowest-resource languages. Overall, these
results highlight the nuanced relationship between translation quality, transformation strategy, and
language resource level in determining the effectiveness of the prompt transformations.

4.3.4 Comparison to External Models

To ground our results in comparison with the external state of the art, we compare the performance
against the teacher model itself, GEMMA3-27B-1T, focusing on generative performance in the ma-
chine translation task. The Difficulty transformation performed particularly well—scoring within
2 points (and 3 points above the Translated baseline) of the (more than 3 times larger) teacher on
average. The breakdown by language in fig. 3 reveals that our method nominally outperforms the
teacher model in German, Spanish, Greek, and Welsh, being most meaningful in Welsh and German
and Spanish (96%, 91%, 70% accuracy with humans respectively, according to [Kocmi et al., 2024]).
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Furthermore, we compare in table 5 the Cultural+Difficulty model with QWEN2.5-7B' on open-
ended generation tasks in both mArenaHard and PolyWrite. This evaluation aims to assess whether
our interventions—though not explicitly optimized for downstream metrics on particular benchmarks—
yield a competitive checkpoint. Our results show that the model achieves a 56% win rate on
mArenaHard on average across languages, winning in 9/13 languages, being outperformed in the
highest-resourced ones, Czech, German, Spanish and English. More impressively, our model achieves
average win rates of 88% on PolyWrite, winning in all languages but English, see individual lan-
guage breakdowns in table 23. While for both evaluation sets, completion lengths for our model are
substantially longer, it does not seem to be the deciding factor in win rates. Upon inspection, we
find that our model’s generations for PolyWrite tend to be more elaborate, expressive and creative.

These outcomes highlight the effectiveness of our interventions in enhancing the model’s proficiency
in generating text for our target languages.

5 Related Work

For multilingual LLMs, the majority of prior studies on targeted data augmentation has been focused
on QA tasks, as surveyed in |[Liu et al., 2024]. Here, we review in detail the works that target
generative tasks.

5.1 Translation

Enomoto et al. [2025] compare instructing multilingual LLMs in the target languages with transla-
tion from English. They find that instructing models in English is not as advantageous as previously
assumed, when translationese is being controlled for.

Li et al. [2025] show that translationese bias in LLM outputs for translation tasks stems from the
instruction finetuning stage, where models are typically trained on translated data. They propose
approaching this via polishing or filtering for unnatural data points after data generation, while we
directly address it during the prompt expansion phase. The post-hoc filtering route was also chosen
in Apertus [Hernandez-Cano et al., 2025] and EuroLLM (complexity and readability) [Martins et al.,
2025]. Martins et al. [2025] also explore writing prompts from scratch giving a LLM seed prompts
from trusted sources.

5.2 Naturalness

Chen et al. [2024] showed that natural target-language data can outperform translated data for
instruction tuning, particularly when evaluated on generative benchmarks and those written in
target languages. Interestingly, the benefits of new knowledge captured in these languages appears
to outweigh the risk of translation artifacts. Our work studies an attractive middle ground between
the two scenarios: Even without native target language data (which are notoriously hard to get by),
we can do much better than with plain translated prompts.

5.3 Difficulty

Xu et al. [2024] demonstrated the effectiveness of using LLMs to synthetically scale-up the complex-
ity of instruction based on the original prompts. Additionally, Muennighoff et al. [2025] showed that

Yhttps://huggingface.co/Quen/Quen2.5-7B- Instruct
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by curating for difficult mathematical problems, even a small quantity of examples can massively
improve the performance of the model on mathematical reasoning tasks. Our work extends these
findings to the multilingual setting in the vein that learning from difficult multilingual examples
improves model performance on MGSM. Additionally, we note that the biggest gains in PolyWrite
win-rates also come from learning from these difficult examples.

5.4 Natural, Difficult, and Diverse

Zhou et al. [2023] noted that only a handful of curated prompt-completion pairs from diverse
and high-quality sources are needed to generate human-preferred responses. Our work shows that
through prompt transformations you can extend these curated English prompts to improve model
performance in multilingual setting, addressing the massive imbalance of instruction data between
languages.

6 Conclusion

In this work, we have demonstrated the potential of synthetic data generation for enriching multi-
lingual datasets through the creation of higher-quality, contextually aligned, and culturally sensitive
data that better reflects real-world language use. By systematically transforming the prompts, we
are able to guide teacher model generations to be more adaptive and contextually nuanced to the
target languages, consequently endowing our models with these characteristics. Our results show
that systematic data transformations can produce models with outputs that are more natural, cul-
turally grounded, and linguistically rich. We position this study as an initial step toward principled
approaches to multilingual synthetic data generation, an essential direction for developing inclusive,
culturally aware, and globally capable language models.

Limitations

6.1 Reliability of Synthetic Data

Learning from synthetic data poses inherent risks and has well-studied limitations [Liu et al., 2024].
In our experiments, we mostly found synthetic data beneficial and are not aware of similar human-
authored data that could be used in its place. We include language identification filtering, but
other biases or errors could still have transferred from the teacher into the student model, especially
those that would not move the needles of our evaluations. We recommend exploring the addition
of more targeted filters in future work, especially for lower-resource languages or languages where
performance out-of-the-box is sub-par. Ideally, native speakers should be involved to inspect samples
of the generated data.

6.2 Language Scope

Our study covers 12 languages, and we find fairly consistent performance across the bench, taking
into account their differences in resourcedness and support in student base and teacher model.
Further work needs to confirm if the observations transfer to similarly positioned languages. There
might also be some benefits from geographic proximity that we have not controlled for. We have not
pushed the method to the extremes (very low-resource and no evidence of language support) because
it is obvious that relying on bootstrapping from existing models and automatic translation will not
work with a cold start. However, there might be more languages beyond our lowest-resourced ones,
that will still benefit from our method.
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6.3 Evaluation Shortcomings

LLM judges might have been trained on translationese as well and therefore favor it in their prefer-
ences [Chen et al., 2024]. Similarly, the base model might still score translationese as low-perplexity
if it has seen translations during pre-training (likely according to Thompson et al. [2024]). Due
to a lack of target-language evaluation benchmarks for challenging and relevant open-ended ques-
tions [Kreutzer et al., 2025|, both our datasets for these tasks are composed of translated prompts
for languages outside of English. Models trained on more translated prompts might have an ad-
vantage at evaluation time [Chen et al., 2024; Kreutzer et al., 2025]. Human evaluation would be
needed to confirm model rankings eventually.

6.4 Further Optimizing the Quality of the Data

Direction for further improvement of downstream results are the optimization of the machine trans-
lation, e.g. hand-picking the best available translator for each language and task, and the opti-
mization of the generation process, e.g. by involving multiple teachers, quality filters or sequential
edits [Odumakinde et al., 2025; Khairi et al., 2025a).
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A Use of Al Disclosure

For this paper we used Al to help with plotting code and grammar correction.

B Focus Languages

Language Script Lang. Family Resourcedness WMT24++ Flores Prompts
(code) Institution. Data Expert Gemma Expert Gemma Expert Gemma
German (de) Latn IE / Germanic high 5 91.91 83.64 97.78 92.41 93.96 92.49
Spanish (es) Latn IE / Ttalic high 5 87.98 73.30 96.26 92.78 89.15 86.40
Czech (cs) Latn IE / Balto-Slavic high 4 86.11 69.37 96.64 91.91 86.00 82.03
Ukrainian (uk)  Cyrl IE / Balto-Slavic high 4 84.87 69.68 94.70 88.69 82.23 79.51
Greek (el) Grek IE / Greek high 3 84.62 69.86 93.37 85.58 83.86 80.78
xHungarian (hu) Latn Uralic / Finnic high 4 81.64 66.19 92.48 88.49 83.61 78.88
*Slovak (sk) Latn IE / Balto-Slavic high 3 82.67 66.83 94.53 91.54 85.71 81.36
*Croatian (hr) Latn IE / Balto-Slavic high 3 81.39 69.51 92.60 89.83 79.91 78.86
*Lithuanian (lt) Latn IE / Balto-Slavic high 3 76.58 61.12 89.10 82.45 84.11 82.40
*xLatvian (1v) Latn IE / Balto-Slavic high 3 64.15 60.90 76.86 77.59 69.65 73.18
*Basque (eu) Latn Basque mid 4 — 62.87 63.20 66.01 70.19
*Welsh (cy) Latn IE / Celtic mid 3 — 79.22 62.02 73.75 68.30
Avg - - 82.19 69.04  88.87 83.87 81.04 79.53

Table 6: Language Overview: We characterize the languages of study (1) in terms of resourcedness with
respect to data availability with levels estimated by Ranathunga & de Silva [2022] (Data), and whether they are
mid or high-institutional in terms of vitality according to Ethnologue (Institution.) (data from [Ranathunga
& de Silva, 2022]) and (2) in terms of XCometXL [Guerreiro et al., 2024] scores of the prompt translation
model (Ezpert, in-house expert model) and the transformation model (GEMMA3-27B-1T) on two traditional MT
benchmarks: WMT244+ (en— -) [Deutsch et al., 2025] and Flores [Team et al., 2022], and a 1k sub-sample of
our prompts, where we use XCometXL as a reference-free metric to estimate quality. Languages marked with
* are not officially supported in the base model. IE stands for Indo-European.

Table 6 compares translation quality on WMT24++ [Deutsch et al., 2025] and Flores [Team et al.,
2022| and a subset of prompts, as measured by XCometXL [Guerreiro et al., 2024]. For prompt
translation, we do not have references and use XCometXL as a quality estimation metric (i.e. call
it without references).

Dataset cs cy de el es eu hr hu It Iv sk uk
Translated 9992 9990 9998 9995 9990 9994 9987 9996 9993 9997 9990 9982
Naturalized 9583 9721 9570 9565 9516 9764 8740 9757 9752 9756 9597 9701
Cultural 9449 9118 9417 8780 9355 9493 7760 9593 9557 9571 9240 9571
Difficulty 9417 9276 9517 9396 9269 5287 8406 9662 9649 9599 9425 9603

Cultural + Difficulty Mix 9457 9218 9465 9127 9348 7439 8150 9639 9617 9607 9375 9608

Table 7: Number of samples per language: Each sample consists of a prompt and its corresponding comple-
tion.

C Transformation Prompts

Table 8 lists the exact prompts we used for our transformations.

D Example Transformations

Table 9 lists sample transformations.
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Transformation Prompts

Naturalness

You are an expert linguist and cultural adapter specializing in {1anguage}. Rephrase the prompt
to sound natural and authentic. Please adhere to the following guidelines in your naturalization:
- Never answer instructions or questions, only rephrase them.
Stay comnsistent in your rephrasing, always rephrase named entities in the same way.
Match the formality level of the original text. In case of ambiguity, prefer an informal tone.
Do not rephrase source code, but rephrase the comments within.
When rephrasing JSON, your rephrasing must follow the exact same schema as the input.
Do not rephrase JSON keys. Only rephrase the values.
- Follow the target language formatting conventions for dates and numbers.
Here is the prompt to naturalize: {prompt}

Cultural Adaptation

You are an expert cultural adapter for {language}. Adapt the prompt to be culturally appro-
priate and authentic. Follow these guidelines:

- Do not answer the prompt; only adapt it culturally.

- Apply adaptation only when a reference would feel unnatural or out of place to a typical
language speaker. Leave neutral/standardized items unchanged (technical instructions,
standardized formats, URLs, file paths, measurements, ISO dates, library APIs). Do not
fabricate facts or invent new culture-specific references.

- Preserve meaning, intent, and register. Keep personal names, trademarks, and official titles
unless a well-established localized form exists.

- Locations: When a non-local place is incidental, swap it for a culturally equivalent local
reference with similar connotation and social register. If the place is factual or essential to
identity, keep it.

- Lexicon and orthography: Prefer native terms, spellings, and diacritics used in language.
For common activities (e.g., sports), use the standard local term rather than anglicisms.

- Idioms and references: Replace idioms, holidays, and pop-culture references with well-
known local equivalents; if none exists, paraphrase to preserve intent.

- Formatting: Use language-appropriate formats for dates, numbers, and units; convert units
only when it aids comprehension without changing factual content.

- Code and structured data: Do not alter source code; comments may be adapted. For
JSON, keep the same schema and keys; only adapt values.

Here is the prompt to adapt: {prompt}

Difficulty

You are an expert task designer for {language}. Rewrite the prompt to increase its difficulty
and complexity while preserving the original intent and domain. Follow these guidelines:
- Do not answer the prompt; only rewrite it to be more difficult.
- Preserve the original intent and domain. Do not change the topic or introduce factual
errors.
- Tailor the rewrite to the prompt’s task type (e.g., coding, data wrangling/SQL, creative
writing, analysis/explanation, classification, dialogue/roleplay).
- Code and JSON: do not alter source code; comments/instructions may be made more
demanding. For JSON, keep the same schema and keys; only adapt values and constraints.
- Ensure the task remains solvable with the given information; if extra assumptions are
needed, require the solver to list and justify them.
Here is the prompt to complexify: {prompt}

Table 8: Transformation prompt templates with placeholders for language and source prompt.
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Transformation Result

Seed prompt What’s the difference between thai ginger and regular ginger?
TYanshﬂjon(de)Was ist der Unterschied zwischen thail&ndischem Ingwer und normalem Ingwer?

Naturalisation Was ist der Unterschied zwischen thail&ndischem Ingwer und dem Ingwer, den man
normalerweise kennt?

Cultural Was ist der Unterschied zwischen thail&ndischem Ingwer und dem Ingwer, den man
1\daptatkn1 hierzulande iiblicherweise im Handel findet?
Difficulty Vergleichen und kontrastieren Sie detailliert thaildndischen Ingwer (Kha) mit dem

in der europdischen Kiiche iiblicherweise verwendeten Ingwer (Zingiber officinale).
Thre Analyse soll folgende Aspekte beriicksichtigen: botanische Unterschiede
(einschliefflich, aber nicht beschrinkt auf Rhizom-Morphologie und &therische
ﬁl—Zusammensetzung), typische Anbaubedingungen und -methoden in Thailand versus anderen
Anbauregionen, kulinarische Anwendungen und Geschmacksnuancen (unter Beriicksichtigung
regionaler Variationen innerhalb Thailands und Europas), sowie traditionelle
medizinische Verwendungen in den jeweiligen Kulturen.\n\nIhre Antwort soll in

Form eines strukturierten Essays verfasst sein, der mindestens 500 Worter umfasst.
Zitieren Sie mindestens drei wissenschaftliche Quellen (z.B. botanische Datenbanken,
ethnobotanische Studien, landwirtschaftliche Forschungsberichte) und zwei Kochbiicher
oder kulinarische Fachartikel, die sich explizit mit Ingwer befassen.\n\nDariiber
hinaus sollen Sie eine Tabelle erstellen, die die wichtigsten Unterschiede in den
oben genannten Aspekten iibersichtlich zusammenfasst.\n\nSollten Sie Annahmen iiber
spezifische Ingwersorten innerhalb Europas treffen (z.B. hinsichtlich Herkunft oder
Anbaumethoden), so sind diese explizit zu benennen und zu begriinden. Ebenso sind
etwaige Schwierigkeiten bei der Beschaffung spezifischer Informationen zu Kha zu
erwdhnen und die angewandten Strategien zur Informationsfindung zu erl&utern.

Seed prompt Is it possible to have a permanent job and a part-time job at the same time in the UK?

Translation ;Es posible tener un trabajo permanente y un trabajo a tiempo parcial al mismo tiempo
(es) en el Reino Unido?

Naturalisation ;Se puede tener un trabajo fijo y otro a media jornada a la vez en el Reino Unido?

Cultural ;Es posible compaginar un trabajo a tiempo completo con otro a media jornada en el
Adaptation Reino Unido?

Difficulty Un ciudadano espafiol estd considerando una oferta de empleo a tiempo parcial en
el Reino Unido mientras ya mantiene un contrato de trabajo a tiempo completo con
una empresa espafiola que permite el trabajo remoto desde el extranjero. Analice
exhaustivamente la legalidad y las implicaciones fiscales de esta situacidnm,
considerando tanto la legislacidén laboral del Reino Unido como las regulaciones
fiscales espafiolas e internacionales (incluyendo posibles convenios de doble
imposicién). Su respuesta debe:\n\nl. =**Detallar las restricciones legales del
Reino Unido** con respecto a la compatibilidad de empleos, incluyendo la consideracién
de las clausulas de exclusividad en los contratos de trabajo (si las hubiera)
y las regulaciones especificas para trabajadores extranjeros.\n2. **Explicar
las obligaciones fiscales del ciudadano espafiol** en Espafia, incluyendo cémo se
tratarian los ingresos obtenidos en el Reino Unido y si estaria sujeto a algin
tipo de declaracidén especial.\n3. **Evaluar las posibles implicaciones en la
Seguridad Social** tanto en Espafia como en el Reino Unido, considerando la posibilidad
de cotizaciones en ambos paises y como esto afectaria a sus derechos a futuras
prestaciones.\n4. #**xIdentificar y justificar cualquier suposicidn** que deba hacerse
para completar el andlisis, por ejemplo, sobre el tipo de contrato de trabajo en
Espafia, el nivel de ingresos en ambos empleos, o la existencia de un convenio de doble
imposicidén aplicable.\n5. **Presentar un resumen conciso** de los riesgos y beneficios
clave para el ciudadano espafiol, incluyendo recomendaciones sobre los pasos a seguir
para garantizar el cumplimiento legal y fiscal.\n\nLa respuesta debe estar redactada
en un espafiol formal y preciso, demostrando un conocimiento profundo de la legislacién
laboral y fiscal relevante. Se valorard la capacidad de presentar informacién compleja
de manera clara y organizada.

Table 9: Example prompts and their respective transformations for German (de) above and Spanish (es) below.
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Language Translation Naturalized A

de 91.50 91.11 -0.39
es 85.42 84.88 -0.56
cs 86.21 83.27 -2.95
hu 84.84 85.25 +0.41
hr 80.45 79.68 -0.77
uk 85.34 85.10 -0.24
el 82.46 84.14 +1.70
sk 80.21 77.86 -2.35
It 77.67 79.07 +1.40
Iv 68.07 67.11 -0.96
eu 62.53 65.43 +2.90
cy 69.62 70.32 +0.70
Avg 79.53 79.43 -0.10

Table 10: Translation Quality of Naturalized vs Machine-Translated: We compare reference-free
XCometXL scores before and after the naturalness transformation on a random sample of 100 prompts.

E Naturalness vs Translation

Our naturalness transformation can be seen as a form of post-editing. Therefore, we evaluate the
transformed prompts with a reference-free machine translation metric, XCometXL. Table 10 shows
that for most languages (7/12), translation quality is worsening after naturalization. This does not
mean that quality decreases, it just means that it is less directly aligned with the source prompt
before translation, according to the metric. Naturally, the languages with lowest translation quality

have the highest potential for improving translation quality via the naturalness process, here Basque
and Welsh.

F Training

We trained the model using supervised fine-tuning (SFT) with a cross-entropy loss function. Op-
timization was carried out using the Adam optimizer, configured with hyperparameters 51 = 0.9,
Ba = 0.95, and € = 10~®. We applied an additive weight decay of 0.1 and used gradient clipping with
a maximum norm of 1.0. Training was conducted for two epochs, and evaluation was performed
using the final checkpoint. We used a batch size of 32 and employed a cosine learning rate decay
schedule, with a peak learning rate of 2.5 x 10™* and an end learning rate of 1.25 x 1074,

G Evaluation

G.1 Overview

Table 3 lists covered languages and metrics for each of the included benchmarks.
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Name Language List Metric

GlobalMMLU cs, en, de, el, 1t, es, uk Accuracy

Include44 eu, hr, de, el, hu, It, es, uk Accuracy

Flores eu, hr, cs, de, el, hu, lv, It, sk, es, uk, cy xCometXL
MGSM+-+ eu, cs, en, de, el, hu, es, cy Accuracy

PolyWrite en, de, es, cs, uk, hu, el, sk, hr, It, Iv, eu, cy self-BLEU, win rates

mArenaHard-v2.0++ en, de, es, cs, uk, el, v, 1t, hu, hr, sk, cy, eu  win rates

Table 11: Evaluation suite: We evaluate on close-ended and open-ended tasks, which each cover a subset of
our 13 focus languages. MGSM-++ is an extension of MGSM [Shi et al., 2023] based on publicly available
high-quality translations.

G.2 Implementation

For MGSM, use simple-evals,'® for MCQA tasks we use the generative form of evaluation that
operates on tokens and not on likelihoods, as also implemented in simple-evals. For win-rates we
use our own in-house implementation with LLM judge prompts specified in the next section. The
order of models presented in preference ratings is shuffied.

G.3 Prompts

For general win-rates we follow the LLM judge prompt proposed in [Ustiin et al., 2024] that not
only asks the judge to select the more correct generation, but also specifies the target language and
indicates that it should be grammatically correct and fluent. For naturalness win-rates we use the
prompt defined in table 13.

To grade prompts and completions according to difficulty and quality using an LLM as described
in section 3.3.1, we used the prompt defined in table 12.

H Grouped results

H.1 Include44 Results by Domain

Table 14 presents a domain breakdown of the Included4 results for each model.

H.2 G-MMLU Cultural Sensitivity

Table 15 presents Global-MMLU results for questions annotated as cultural-agnostic(CA) and
cultural-sensitive(CS). Each category contains 200 questions and annotations are only available
for English, German and Spanish.

H.3 Supported vs Unsupported performance

Table 16 presents performance comparison on Flores for languages grouped by supported languages
(languages that were included during pretraining of the base model) and unsupported languages.
List of supported languages is showed in section 3.2.1.

nttps://github.com/openai/simple-evals
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Completion Grader (Quality & Difficulty Evaluation)

You are a strict grader of responses. The questions are enclosed in <question></question>
tags, and the answers are enclosed in <answer></answer> tags. Given a question—answer
pair, evaluate the <answer> according to the following criteria:

Does the <answer> address the <question> fully in all parts?

Is the <question> logically sound?

Is the <answer> logically sound?

Is the <answer> factually correct and coherent?

Does the <answer> contain any hallucinations?

Is the <answer> properly formatted?

Does the <answer> use correct punctuation for the given language?

- Are there any other issues with the <question> or <answer> not covered above?

Any <question> or <answer> that fails to meet the above criteria should be penalized
accordingly.

- Give the question and answer pair a quality rating between [A,B,C,D,E| with A being
best and E being worst. The rating should be at the very end and inside the tag
"<quality> < /quality >" without markdown formatting.

- Give the question and answer pair a difficulty rating between [easy, medium, hard].
The rating should come after the quality rating and inside the tag "<difficulty >
< /difficulty >" without markdown formatting.

Prompt Grader (Prompt Quality & Difficulty Evaluation)

You are a strict Grader of prompts. The prompt is inside <prompt></prompt> tags. Given
the following <prompt>, please grade it based on the following criteria:

- Is the <prompt> clear and unambiguous?

- Is the <prompt> logically sound and coherent?

- Is the <prompt> factually correct?

- Does the <prompt> provide sufficient context for a meaningful response?
- Is the <prompt> well-structured and grammatically correct?

- Does the <prompt> have a clear objective or question?

- Is the <prompt> appropriately scoped (not too broad or too narrow)?

- Does the <prompt> avoid contradictions or false premises?

Any <prompt> that fails to address any of the criteria sufficiently should be penalized
accordingly.

Please think step-by-step and elaborate first before doing the following:

- Give the prompt a quality rating between [A,B,C,D,E| with A being best and E
being worst. The rating should be at the very end and inside the tag "<quality>
< /quality>" without markdown formatting.

- Give the prompt a difficulty rating between |easy, medium, hard]. The rating should
come after the quality rating and inside the tag "<difficulty> < /difficulty>" without
markdown formatting.

Table 12: Grader prompts to evaluate completiggs and prompts for overall quality and difficulty.



Judge Prompt

Which of the following responses is the most natural-sounding and overall best one
for the given instruction in {language}? A good response should follow these rules, with
a primary focus on Rule 5 (Naturalness):

- 1) It should be in {language}.

- 2) It should complete the request in the instruction.

- 3) It should be factually correct and semantically comprehensible.

- 4) It should be grammatically correct and fluent.

- 5) Crucially, it should sound natural in {language}. This means it uses com-
mon phrasing, appropriate tone, and idiomatic expressions (where suitable) that a
native speaker would typically use. It should avoid awkward, stilted, or "translated-
sounding" sentences.

Instruction: {prompt}
Response (A): {completion_a}
Response (B): {completion_b}

FIRST provide a concise comparison of the two responses, evaluating primarily which
response sounds more natural and authentic in {language}. Consider if it uses
common phrasing and tone typical of a native speaker, while also meeting the other criteria
(completeness, correctness, grammar). If one Response is better, explain which you prefer
and why, highlighting differences in naturalness. If both responses are identical or equally
good or bad (especially in terms of naturalness), explain why.

SECOND, on a new line, state exactly one of 'Response (A)’ or 'Response (B)" or "TIE’
to indicate your choice of preferred response.

Your response should use the format:
Comparison: <concise comparison and explanation, focusing on naturalness>
Preferred: <'Response (A)’ or 'Response (B)’ or 'TIE >

Table 13: Judge prompt to do pairwise open-ended evaluation focused on naturalness.

Category Business Culture Health Other STEM
Translated 0.524 0.524 0.320 0.396 0.410
Naturalized 0.627 0.515 0.372 0.372 0.439
Cultural 0.534 0.568 0.372 0.399  0.482
_Difficulty 0689 0581 0399 0372 0444
Cult. + Diff. (mix) 0.588 0.587 0.393 0.411 0.447

Table 14: Include44 Accuracy By Domain: average accuracy for each model by question domain. Highest
value per domain is highlighted in bold.
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Model Cultural-Agnostic (CA) Cultural-Sensitive (CS)

Translated 0.677 0.605
Naturalized 0.676 0.635
Cultural 0.700 0.670

Dbifficulty .~ 0v8 0666
Cultural + Difficulty Mix 0.683 0.642

Table 15: Performance on GMMLU by cultural sensitivity. Comparison of model accuracies on cultural-
agnostic (CA) and cultural-sensitive (CS) subsets. Higher is better. Only includes English, German and
Spanish, the CS-annotated languages that overlap with our subset of languages.

Model Unsupported Supported
Translated 0.716 0.882
Naturalized 0.719 0.890
Cultural 0.732 0.907
Difficulty 0.749 0.908

* Cultural + Difficulty Mix ~ 0.742 0.905

Table 16: Performance comparison in machine translation (XCometXL score on Flores), averaged across lan-
guages grouped by pretraining support (see table 1).

H.4 Downstream Results By Language

Table 17, table 18, table 19, table 20, table 21 and table 22 present language breakdowns for the
performance of each model on the benchmarks. Table 23 presents the language breakdowns for the
performance of the Cultural+ Difficulty model against an external model in open-ended generation.

Model cs cy de el en es eu hr hu 1t Iv sk uk Average
Naturalized 0.552  0.537* 0.533* 0.550 0.800 0.568 0.592 0.517* 0.545 0.600 0.562 0.558  0.600 0.578
Cultural 0.623 0.606 0.646 0.629 0.846 0.700 0.622 0.636 0.640 0.666 0.602 0.601 0.723 0.657
Difficulty 0.597 0.564 0.653 0.630 0.815 0.667 0.544* 0.578 0.605 0.587 0.655 0.540% 0.600 0.618

" Cult. + Diff. Mix 0.617 0.685 0.630 0.643 0.851 0.692 0.623 0.676 0.714 0.683 0.663 0.654 0.662 0.676

Table 17: mArenaHard+-+ results: win-rates over translated baseline. Best score per language in bold.
Values marked with an asterisks indicate win-rate differences are not significant according to 95% Cls.
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Model cs cy de el en es eu hr hu 1t v sk uk Average

Naturalized 0.682 0.607 0.662 0.626 0.632 0.684 0.686 0.597 0.623 0.600 0.603 0.675 0.617 0.638
Cultural 0.692 0.613 0701 0.619 0594 0.774 0.677 0.649 0.672 0.665 0.626 0.630 0.682 0.661
Difficulty 0.646  0.598 0.766 0.555* 0.574* 0.787 0.697 0.571* 0.695 0.710 0.594 0.552* 0.656 0.646

Cultural + Difficulty Mix 0.591 0.668 0.740 0.568* 0.742 0.755 0.677 0.649 0.682 0.684 0.677 0.623 0.643 0.669

Table 18: PolyWrite results: win-rates over Translated baseline. Best score per language in bold. Values
marked with an asterisks indicate win-rate differences are not significant according to 95% Cls.

Model cs de el en es It uk Average
Translated 0.529 0.533 0.506 0.605 0.558 0.440 0.503 0.525
Naturalized 0.535 0.546 0.507 0.602 0.567 0.450 0.510 0.531
Cultural 0.579 0.590 0.556 0.665 0.619 0.486 0.554 0.579
Difficulty 0.555 0.535 0.540 0.575 0.565 0.495 0.555 0.545

Cultural + Difficulty Mix 0.573  0.583 0.550 0.649 0.613 0.488 0.551 0.572

Table 19: Global MMLU results: Accuracy. Best score per language in bold.

Model de el es eu hr hu It uk  Average
Translated 0.489 0.409 0.544 0.358 0.556 0.373 0.489 0.542 0.470
Naturalized 0.460 0427 0.575 0.334 0.567 0.391 0.453 0.542 0.469
Cultural 0496 0447 0.613 0.346 0.620 0.405 0.530 0.609 0.508
Difficulty 0.518 0.465 0.598 0.336 0.651 0.407 0.539 0.580 0.512

Cultural + Difficulty Mix 0.482 0.480 0.644 0.372 0.644 0.405 0.530 0.584 0.518

Table 20: Include 44 results: Accuracy. Best score per language in bold.

Model cs cy de el es eu hr hu It v sk uk Average
Translated 0.879 0.671 0.947 0.834 0906 0.614 0.808 0.710 0.711 0.692 0.810 0.845 0.786
Naturalized 0.882 0.662 0.946 0.844 0933 0.615 0.802 0.714 0.725 0.693 0.825 0.846 0.791
Cultural 0.904 0.673 0.954 0.858 0935 0.614 0.821 0.733 0.736 0.707 0.842 0.881 0.805
Difficulty 0.905 0.698 0.954 0.861 0.936 0.588 0.831 0.764 0.767 0.746 0.856 0.884 0.816
Cultural + Difficulty Mix  0.900 0.684 0.954 0.856 0.933 0.601 0.822 0.747 0.757 0.731 0.855 0.880 0.810
GEMMA3-27B 0.918 0.623 0.924 0.855 0.928 0.633 0.901 0.886 0.824 0.776 0.916 0.888 0.839

Table 21: Flores: XCometXL scores. Best score per language in bold.

Model cs cy de el en es eu hu Average
Translated 0.665 0.350 0.645 0.625 0.745 0.705 0.295 0.470 0.5625
Naturalized 0.640 0.295 0.665 0.680 0.750 0.735 0.265 0.490 0.5650
Cultural 0.736  0.456 0.740 0.752 0.840 0.800 0.376 0.580 0.660
Difficulty 0.750 0.385 0.775 0.780 0.810 0.790 0.320 0.595  0.6506

Cultural + Difficulty Mix 0.780 0.472 0.756 0.752 0.876 0.788 0.400 0.556 0.673

Table 22: MGSM++: best score per language in bold.

Benchmark cs cy de el en es eu hr hu 1t Iv sk uk Average

mArenaHard 0.427 0.794 0.438 0.696 0.226 0.421 0.766 0.578 0.603 0.660 0.648 0.568 0.556 0.568
PolyWrite 0.942 0.794 0.890 0.994 0.284 0.768 0.974 0.974 0.987 0.981 0.948 0.987 0.974 0.884

Table 23: Open Ended Win-Rates against Qwen2.5-7B: Win-rates across languages from direct comparisons
of the Cultural+Difficulty model against Qwen2.5-7B on mArenaHard and PolyWrite. Language where our
model wins are in bold. All win-rate differences are significant according to 95% CIs.
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