[Halcon&检测] 划痕检测之高斯导数提取

本文详细介绍了如何使用函数derivate_gauss对图像进行高斯导数卷积,计算不同特征,包括一阶和二阶导数。随后通过代码流程展示了从图像读取、处理到结果展示的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >



一. 核心算子

函数derivate_gauss(Image : DerivGauss : Sigma, Component : ) 将图像与高斯函数的导数进行卷积,并计算由此推导出的各种特征。

参数
Image(in)输入图像;
DerivGauss (out)滤波后的结果图像;
Sigma(in)高斯平滑系数。如果一个值,那么在列和行方向上的平滑量是相同的;如果在Sigma中传递两个值,第一个值指定在列方向上的平滑量,而第二个值指定在行方向上的平滑量。参考值:(0.2 ≤ Sigma ≤ 50.0);
Component (in)要计算的导数或特征。'none':只平滑,'x'、'y':沿x、y的一阶导数,'xx'、'yy':沿x、y的二阶导数等;


二. 代码流程

原图:
在这里插入图片描述
代码展示:

dev_update_window ('off')
dev_close_window ()
dev_open_window (0, 0, 450, 400, 'black', WindowHandle)
read_image (Image, 'C:/Users/Administrator/Desktop/11.png')

*像这种缺陷直接使用高斯导数求出来
derivate_gauss (Image, DerivGauss, 1, 'xx')
mean_image (DerivGauss, ImageMean, 2, 10)

threshold (ImageMean, Regions, -8, -1.5)
connection (Regions, ConnectedRegions)
select_shape_std (ConnectedRegions, SelectedRegions, 'max_area', 70)

dev_display (Image)
dev_display (SelectedRegions)

效果展示:

在这里插入图片描述


下雨天,最惬意的事莫过于躺在床上静静听雨,雨中入眠,连梦里也长出青苔。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

丶布布

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值