rosbridge_udp.launch

这个博客配置了一个ROS节点`arduino_node.py`来连接Arduino,并使用`rosbridge_udp`节点进行UDP通信。参数包括端口、超时时间、消息延迟等,同时也定义了要监听的topics、services和params。这展示了如何在ROS环境中通过UDP与外部设备进行实时数据交换。
<launch>
  <arg name="port" default="9090" />
  <arg name="interface" default="" />

  <arg name="fragment_timeout" default="600" />
  <arg name="delay_between_messages" default="0" />
  <arg name="max_message_size" default="None" />

  <arg name="authenticate" default="false" />

  <arg name="topics_glob" default="odom" />
  <arg name="services_glob" default="[]" />
  <arg name="params_glob" default="[]" />
  
  
  
  <node name="arduino" pkg="ros_arduino_python" type="arduino_node.py" output="screen">
      <rosparam file="$(find ros_arduino_python)/config/my_arduino_params.yaml" command="load" />
  </node>

  <node name="rosbridge_udp" pkg="rosbridge_server" type="rosbridge_udp" output="screen">
    <param name="authenticate" value="$(arg authenticate)" />

    <param name="port" value="$(arg port)"/>
    <param name="interface" value="$(arg interface)"/>
    <param name="fragment_timeout" value="$(arg fragment_timeout)"/>
    <param name="delay_between_messages" value="$(arg delay_between_messages)"/>
    <param name="max_message_size" value="$(arg max_message_size)"/>

    <param name="topics_glob" value="$(arg topics_glob)"/>
    <param name="services_glob" value="$(arg services_glob)"/>
    <param name="params_glob" value="$(arg params_glob)"/>
  </node>

  <!--node name="rosapi" pkg="rosapi" type="rosapi_node" /-->
  

</launch>

#!/usr/bin/env python3 # -*- coding: utf-8 -*- import rospy import actionlib import cv2 import pytesseract from std_msgs.msg import String from geometry_msgs.msg import PoseStamped from move_base_msgs.msg import MoveBaseAction, MoveBaseGoal from sensor_msgs.msg import Image from cv_bridge import CvBridge from my_control.msg import simulation,simulation_result # 自定义消息 class SimulationNode: def __init__(self): rospy.init_node('simulation_node') # 初始化参数 self.target_class = None self.current_room = None self.room_results = {} # 存储房间检测结果 # 房间坐标映射 (根据实际仿真环境配置) self.room_coordinates = { 'A': (1.0, 2.0, 0.0, 1.0), 'B': (3.0, 4.0, 0.0, 1.0), 'C': (5.0, 6.0, 0.0, 1.0) } # ROS通信设置 self.qr_sub = rospy.Subscriber('/qr_result', String, self.qr_callback) self.image_sub = rospy.Subscriber('/camera/image_raw', Image, self.image_callback) self.result_pub = rospy.Publisher('/simulation_result', SimulationResult, queue_size=10) # 导航客户端 self.move_base_client = actionlib.SimpleActionClient('move_base', MoveBaseAction) rospy.loginfo("等待move_base服务器...") self.move_base_client.wait_for_server() rospy.loginfo("已连接move_base服务器") # 图像处理工具 self.bridge = CvBridge() rospy.loginfo("仿真节点已启动,等待二维码识别结果...") def qr_callback(self, msg): """处理二维码识别结果""" rospy.loginfo(f"收到二维码结果: {msg.data}") # 验证并存储目标类别 valid_classes = ['fruit', 'vegetable', 'dessert'] if msg.data.lower() in valid_classes: self.target_class = msg.data.lower() rospy.loginfo(f"开始搜索: {self.target_class}") self.search_rooms() else: rospy.logwarn(f"无效的类别: {msg.data}") def search_rooms(self): """按顺序搜索房间""" rooms = ['A', 'B', 'C'] for room in rooms: rospy.loginfo(f"导航到房间 {room}") self.current_room = room self.navigate_to_room(room) # 等待到达并检测 rospy.sleep(2) # 实际应用中应使用导航状态回调 rospy.loginfo(f"在房间 {room} 检测标定板...") rospy.sleep(3) # 给检测留出时间 # 所有房间检测完成后发布结果 self.publish_final_result() def navigate_to_room(self, room_id): """导航到指定房间""" if room_id not in self.room_coordinates: rospy.logerr(f"无效的房间ID: {room_id}") return x, y, z, w = self.room_coordinates[room_id] goal = MoveBaseGoal() goal.target_pose.header.frame_id = "map" goal.target_pose.header.stamp = rospy.Time.now() goal.target_pose.pose.position.x = x goal.target_pose.pose.position.y = y goal.target_pose.pose.orientation.w = w self.move_base_client.send_goal(goal) self.move_base_client.wait_for_result() def image_callback(self, msg): """处理摄像头图像""" if not self.target_class or not self.current_room: return try: cv_image = self.bridge.imgmsg_to_cv2(msg, "bgr8") detected_class = self.detect_calibration_board(cv_image) if detected_class == self.target_class: rospy.loginfo(f"在房间 {self.current_room} 检测到目标: {detected_class}") self.room_results[self.current_room] = detected_class except Exception as e: rospy.logerr(f"图像处理错误: {str(e)}") def detect_calibration_board(self, image): """检测标定板上的文字类别""" # 图像预处理 gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) _, thresh = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY) # 使用OCR识别文字 text = pytesseract.image_to_string(thresh).strip().lower() # 返回识别到的类别 valid_classes = ['fruit', 'vegetable', 'dessert'] for cls in valid_classes: if cls in text: return cls return "unknown" def publish_final_result(self): """发布最终检测结果""" result_msg = SimulationResult() # 查找包含目标的房间 target_room = "N/A" for room, cls in self.room_results.items(): if cls == self.target_class: target_room = room break result_msg.room = target_room result_msg.myclass = self.target_class self.result_pub.publish(result_msg) rospy.loginfo(f"发布结果: 房间 {target_room}, 类别 {self.target_class}") # 重置状态 self.target_class = None self.current_room = None self.room_results = {} if __name__ == '__main__': try: node = SimulationNode() rospy.spin() except rospy.ROSInterruptException: pass 根据rosbridge通信要求,再写一遍这个代码
最新发布
07-31
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值