背景
本篇图文是LSGO软件技术团队组织的 第二期基础算法(Leetcode)刻意练习训练营 的打卡任务。本期训练营采用分类别练习的模式,即选择了五个知识点(数组、链表、字符串、树、贪心算法),每个知识点选择了 三个简单、两个中等、一个困难 等级的题目,共计三十道题,利用三十天的时间完成这组刻意练习。
本次任务的知识点:贪心算法
贪心算法(greedy algorithm),又称贪婪算法,是一种在每一步选择中都采取在当前状态下最好或最优(即最有利)的选择,从而希望导致结果是最好或最优的算法。
贪心算法在有最优子结构的问题中尤为有效。最优子结构的意思是局部最优解能决定全局最优解。简单地说,问题能够分解成子问题来解决,子问题的最优解能递推到最终问题的最优解。
贪心算法与动态规划的不同在于它对每个子问题的解决方案都做出选择,不能回退。动态规划则会保存以前的运算结果,并根据以前的结果对当前进行选择,有回退功能。
题目
- 题号:455
- 难度:简单
- https://leetcode-cn.com/problems/assign-cookies/
假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。对每个孩子i
,都有一个胃口值gi
,这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干j
,都有一个尺寸sj
。如果sj >= gi
,我们可以将这个饼干j
分配给孩子i
,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。
注意:
你可以假设胃口值为正。
一个小朋友最多只能拥有一块饼干。
示例 1:
输入: [1,2,3], [1,1]
输出: 1
解释:
你有三个孩子和两块小饼干,3个孩子的胃口值分别是:1,2,3。
虽然你有两块小饼干,由于他们的尺寸都是1,你只能让胃口值是1的孩子满足。
所以你应该输出1。
示例 2:
输入: [1,2], [1,2,3]
输出: 2
解释:
你有两个孩子和三块小饼干,2个孩子的胃口值分别是1,2。
你拥有的饼干数量和尺寸都足以让所有孩子满足。
所以你应该输出2.
示例 3:
输入: [10,9,8,7], [5,6,7,8]
输出: 2
实现
第一种:贪心算法
贪心策略:优先满足胃口小的小朋友的需求。
- 对
g
和s
升序排序 - 初始化两个索引
i
和j
分别指向g
和s
初始位置
若g[i] <= s[j]
:饼干满足胃口,把能满足的孩子数量加1,并移动指针i++,j++
。
若g[i] > s[j]
:无法满足胃口,j++
,继续查看下一块饼干是否可以满足胃口。
- 执行结果:通过
- 执行用时:160 ms, 在所有 C# 提交中击败了 58.21% 的用户
- 内存消耗:30.6 MB, 在所有 C# 提交中击败了 11.11% 的用户
public class Solution
{
public int FindContentChildren(int[] g, int[] s)
{
Array.Sort(g);
Array.Sort(s);
int i = 0;
int j = 0;
int result = 0;
while (i < g.Length && j < s.Length)
{
if (s[j] < g[i])
{
j++;
}
else
{
i++;
j++;
result++;
}
}
return result;
}
}
对以上代码进行简化:
- 执行结果:通过
- 执行用时:160 ms, 在所有 C# 提交中击败了 58.21% 的用户
- 内存消耗:30.4 MB, 在所有 C# 提交中击败了 11.11% 的用户
public class Solution
{
public int FindContentChildren(int[] g, int[] s)
{
Array.Sort(g);
Array.Sort(s);
int i = 0;
int j = 0;
int result = 0;
while (i < g.Length && j < s.Length)
{
if (s[j] >= g[i])
{
i++;
result++;
}
j++;
}
return result;
}
}
Python 语言
- 执行结果:通过
- 执行用时:336 ms, 在所有 Python3 提交中击败了 15.90% 的用户
- 内存消耗:15.3 MB, 在所有 Python3 提交中击败了 5.49% 的用户
class Solution:
def findContentChildren(self, g: List[int], s: List[int]) -> int:
g = sorted(g)
s = sorted(s)
i, j, result = 0, 0, 0
while i < len(g) and j < len(s):
if s[j] >= g[i]:
i += 1
result += 1
j += 1
return result
往期活动
LSGO软件技术团队会定期开展提升编程技能的刻意练习活动,希望大家能够参与进来一起刻意练习,一起学习进步!
- Python基础刻意练习活动即将开启,你参加吗?
- Task01:变量、运算符与数据类型
- Task02:条件与循环
- Task03:列表与元组
- Task04:字符串与序列
- Task05:函数与Lambda表达式
- Task06:字典与集合
- Task07:文件与文件系统
- Task08:异常处理
- Task09:else 与 with 语句
- Task10:类与对象
- Task11:魔法方法
- Task12:模块
我是 终身学习者“老马”,一个长期践行“结伴式学习”理念的 中年大叔。
我崇尚分享,渴望成长,于2010年创立了“LSGO软件技术团队”,并加入了国内著名的开源组织“Datawhale”,也是“Dre@mtech”、“智能机器人研究中心”和“大数据与哲学社会科学实验室”的一员。
愿我们一起学习,一起进步,相互陪伴,共同成长。
后台回复「搜搜搜」,随机获取电子资源!
欢迎关注,请扫描二维码: