Llama3如何快速免费的使用体验及免费API接口调用

本文介绍了如何免费体验Llama3模型,包括通过英伟达平台和HuggingFacechat进行对话,以及提供代码示例展示如何通过OpenAIAPI调用。同时提及了获取API_KEY的方法和未来可能的本地部署。文章还展示了如何使用Llama3回答问题并给出个人成长建议。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Llama3如何快速免费的使用体验及免费API接口调用

说明

Llama3的新闻传得已经很多,吹得它有多牛逼。那么怎么来试用一下呢,听别人吹牛逼没有,自己得去体验一把,然后最好能靠它赚到钱才是正事,尤其可以直接调用API,把它集成到自己应用中,想办法变现。

一、免费体验方法

方法一:

访问英伟达的模型体验地址:

https://build.nvidia.com/explore/discover

可以直接选择70B(700亿参数版本)和8B( 80亿参数版本)进行对话体验
在这里插入图片描述

方法二:

使用huggingface的chat,选择llama3-70B

https://huggingface.co/chat/
在这里插入图片描述

二、如何代码免费调用API

代码示例

https://build.nvidia.com/explore/discover

from openai import OpenAI

client = OpenAI(
  base_url = "https://integrate.api.nvidia.com/v1",
  api_key = "xxxxxxxxx"
)

completion = client.chat.completions.create(
  model="meta/llama3-70b",
  messages=[{"role":"user","content":"你提问的问题"}],
  temperature=0.5,
  top_p=1,
  max_tokens=1024,
  stream=True
)

for chunk in completion:
  if chunk.choices[0].delta.content is not None:
    print(chunk.choices[0].delta.content, end="")


如何获取API KEY

点击 Get API KEY注册英伟达账号,邮箱验证后就可以获取到,非常快,没有手机号验证,比注册ChatGPT简单多了。
在这里插入图片描述

三、本地部署

且听下回更新

四、Llama3问题测试

我问:一个人怎么变的很牛逼?请用中文回复

Llama3(70B模型)的回复:

要变成一个很牛逼的人,不是一蹴而就的,但可以通过以下步骤来实现:

明确目标:首先,你需要明确自己想变成什么样的人,什么样的牛逼?是指在某个领域的专家、拥有某种技能、拥有良好的人际关系还是其他?只有明确目标,你才能有的放矢。

不 ngừng学习:学习是变成牛逼的必经之路。阅读书籍、参加课程、实践操作、寻找导师等都是学习的方式。学习不仅仅是获取知识,还包括学习新的技能、思想和方法。

实践和行动:学习后的实践和行动是变成牛逼的关键。只有通过实践和行动,你才能将所学的知识和技能转化为实际能力。

坚持不懈:变成牛逼的人都是通过长期的努力和坚持不懈实现的。不要轻易放弃,遇到困难时要继续前进。

自我反省和调整:在变成牛逼的过程中,你需要不断地自我反省和调整。分析自己的优缺点,调整自己的策略和方法。

保持好奇和开放:牛逼的人都保持着好奇和开放的心态,愿意接受新的想法和挑战。

建立良好的人际关系:良好的人际关系可以帮助你获取更多的资源和机会,变成牛逼的人都需要有良好的人际关系。

保持自信和积极:自信和积极是变成牛逼的重要心理素质。相信自己的能力和潜力,保持积极的心态。

学习失败和挫折:失败和挫折是变成牛逼的必经之路。学习失败和挫折,总结经验教训,继续前进。

保持健康和平衡:最后,变成牛逼的人也需要保持健康和平衡的生活方式。只有身体和精神健康,才能保持长期的战斗力。

记住,变成牛逼的人不是一天完成的,而是通过长期的努力和坚持不懈实现的。💪

调用Llama 3 70B模型可以通过多种方式实现,具体取决于使用场景和资源条件。以下是几种常见的方法: ### 1. 使用Hugging Face Transformers库调用Llama 3 70B模型 如果选择在本地或云服务器上部署Llama 3 70B模型,可以借助Hugging Face的Transformers库进行操作。以下是一个简单的代码示例: ```python from transformers import AutoTokenizer, AutoModelForCausalLM # 加载预训练模型和分词器 model_name = "meta-llama/Llama-3-70b" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) # 输入文本并生成响应 input_text = "Hello, how are you?" inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs) response = tokenizer.decode(outputs[0], skip_special_tokens=True) print(response) ``` 需要注意的是,由于Llama 3 70B模型参数规模较大,运行该模型需要高性能的硬件支持,例如多块GPU设备[^1]。 ### 2. 在线体验Llama 3 70B模型 对于不需要本地部署的用户,可以直接通过在线平台体验Llama 3 70B模型。例如,访问英伟达的模型体验地址或者Hugging Face的聊天界面,选择Llama 3 70B版本进行对话体验[^2]。 ### 3. 使用API服务 某些提供LLM API服务的平台可能已经集成了Llama 3 70B模型,例如阿里云百炼平台或其他AI服务平台。用户可以通过这些平台提供的API接口直接调用Llama 3 70B模型,而无需自行部署。通常需要注册账户、获取API密钥,并按照文档中的示例发送请求。 ### 4. 分布式推理与量化技术 为了降低对硬件的要求,可以采用分布式推理或量化技术优化Llama 3 70B模型的运行效率。分布式推理将模型的不同部分分配到多个计算设备上运行,而量化技术则通过减少模型参数的精度来降低内存占用和计算需求。 ### 注意事项 - **硬件要求**:Llama 3 70B模型需要大量计算资源,建议使用高性能GPU或多卡集群。 - **部署环境**:可以选择本地服务器、云服务(如AWS、Google Cloud)或专用AI加速硬件。 - **优化工具**:利用TensorRT、DeepSpeed等工具进一步优化模型性能。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员陆通

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值