StratifiedKFold 用法

StratifiedKFold交叉验证
本文介绍如何使用StratifiedKFold进行数据集的交叉验证分割,通过具体实例展示了如何将数据集按比例随机分为训练集和测试集,确保类别分布均匀,适用于监督学习模型的评估。

StratifiedKFold 将X_train和 X_test 做有放回抽样,随机分三次,取出索引

import numpy as np
from sklearn.model_selection import StratifiedKFold
X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]])
y = np.array([0, 0, 1, 1])
skf = StratifiedKFold(n_splits=2).split(X, y)
#c= skf.get_n_splits(X, y)

for train_index, test_index in skf:
     print("TRAIN:", train_index, "TEST:", test_index)
     X_train, X_test = X[train_index], X[test_index]
     y_train, y_test = y[train_index], y[test_index]
TRAIN: [1 3] TEST: [0 2]
TRAIN: [0 2] TEST: [1 3]
import numpy as np
from sklearn.model_selection import StratifiedKFold
X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]])
y = np.array([0, 0, 1, 1])
skf = StratifiedKFold(n_splits=2).split(X, y)

print(list(skf))

[(array([1, 3]), array([0, 2])), (array([0, 2]), array([1, 3]))]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值