ROC 曲线和 AUC 值

本文深入解读混淆矩阵的四个基本概念,包括真正例(TP)、真负例(TN)、假正例(FP)和假负例(FN),并介绍常用的分类器评估指标如准确率、错误率、召回率、精确率和F1分数。同时,详述ROC曲线的构造及AUC值的计算,以及如何通过概率排序表理解模型性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

PN合计
TTPFNP
FFPTNN
合计PNP+ N
混淆矩阵的四个术语:真正例 / 真阳性(TP),真负例 / 真阴性(TN),假正例 / 假阳性(FP)、假负例 / 假阴性(FN)。

2、分类器涉及的常见评估度量:

度量公式
准确率(TP+TN)/(P+N)
错误率(FP+FN)/(P+N)
真正例率 / 召回率 / 查全率TP / (TP+FN)
真负例率TN / N
查准率 / 精度TP / P’ = TP / (TP+FP)
假正例率FP / N = FP / (FP+TN)
F1 分数2*(查准率查全率)/ (查准率+查全率)=2TP /(P+N+TP-TN)

3、ROC 曲线

横轴:假正例率 FPR=FP / N = FP / (FP+TN)

纵轴:真正例率 TPR=TP / (TP+FN)

1)、概率分类器对10个测试样本返回的预测概率值的排序表

在这里插入图片描述
在这里插入图片描述
ROC 曲线之下的那部分面积值就是模型的 AUC 值。

如果模型真的很好,随着有序列表向下移动,开始会遇到真正例样本,曲线将陡峭的从 0 开始上升;之后 ,遇到的真正例样本越来越少,假正例样本越来越多,曲线变得平缓趋于水品。

参考链接1
参考链接二

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值