🏆本文收录于 《全栈Bug调优(实战版)》 专栏,该专栏专注于分享我在真实项目开发中遇到的各类疑难Bug及其深层成因,并系统提供高效、可复现的解决思路和实操方案。无论你是刚入行的新手开发者,还是拥有多年项目经验的资深工程师,本专栏都将为你提供一条系统化、高质量的问题排查与优化路径,助力你加速成长,攻克技术壁垒,迈向技术价值最大化与职业发展的更高峰🚀!
📌 特别说明: 文中部分技术问题来源于真实生产环境及网络公开案例,均经过精挑细选与系统化整理,并结合多位一线资深架构师和工程师多年实战经验沉淀,提炼出多种经过验证的高可行性解决方案,供开发者们参考与借鉴。
欢迎 关注、收藏并订阅本专栏,持续更新的干货内容将与您同行,让我们携手精进,技术跃迁,步步高升!

全文目录:
📢 问题描述
问题来源:https://ask.csdn.net/questions/xxx
问题描述:最近在学习browser_use 看了很多的代码 尝试运行,均没有成功。非ui调用方式,有段代码看着比较靠谱,但是报错 “ChatOpenAI” object has no field “ainvoke”,
附上相关代码:
import asyncio
import os
import logging
import warnings
from enum import Enum
from dotenv import load_dotenv
from langchain_openai import ChatOpenAI
from browser_use import Agent
os.environ["ANONYMIZED_TELEMETRY"] = "false"
# 加载环境变量
load_dotenv()
# 配置日志级别和格式
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S'
)
logger = logging.getLogger("browser_use")
logger.setLevel(logging.INFO)
# 忽略LangChainBetaWarning警告
warnings.filterwarnings("ignore", category=UserWarning, message=".*LangChainBetaWarning.*")
class AIMode(Enum):
"""AI调用方式枚举"""
DEEPSEEK = "deepseek"
SILICONFLOW = "siliconflow"
ALIYUN = "aliyun"
OLLAMA = "ollama"
class AIClient:
"""多AI调用方式的客户端"""
def __init__(self, ai_mode: AIMode):
self.ai_mode = ai_mode
self._validate_api_keys()
def _validate_api_keys(self):
"""验证必要的API密钥是否存在"""
required_keys = {
AIMode.DEEPSEEK: 'DEEPSEEK_API_KEY',
AIMode.SILICONFLOW: 'SILICONFLOW_API_KEY'
}
if self.ai_mode in required_keys:
key = required_keys[self.ai_mode]
if not os.environ.get(key):
raise ValueError(f"缺少必要的环境变量: {key}")
def get_llm(self):
"""根据配置获取对应的LLM实例"""
if self.ai_mode == AIMode.DEEPSEEK:
return ChatOpenAI(
base_url='https://api.deepseek.com/v1',
model='deepseek-chat',
api_key=os.environ.get('DEEPSEEK_API_KEY')
)
elif self.ai_mode == AIMode.SILICONFLOW:
return ChatOpenAI(
base_url='https://api.siliconflow.cn',
model='deepseek-ai/DeepSeek-V2.5',
api_key=os.environ.get('SILICONFLOW_API_KEY')
)
else:
raise ValueError(f"不支持的AI调用方式: {self.ai_mode}")
async def main(ai_mode: AIMode = AIMode.SILICONFLOW):
"""主函数"""
try:
# 初始化AI客户端
ai_client = AIClient(ai_mode)
llm = ai_client.get_llm()
# 创建Agent并定义UI测试任务
agent = Agent(
task="1. 访问新浪官网首页(https://www.sina.com.cn/)",
llm=llm,
use_vision=False # 禁用视觉模式,依赖DOM解析
)
# 执行任务并输出分步推理和执行步骤
logger.info("🚀 开始执行任务")
result = await agent.run()
logger.info("✅ 任务执行完成")
# 输出最终结果
print("\n======== 测试结果 ========")
print(result.final_result())
except Exception as e:
logger.error(f"❌ 任务执行失败: {str(e)}")
if __name__ == "__main__":
# 通过参数选择AI调用方式
selected_mode = AIMode.DEEPSEEK # 使用硅基流动模式
asyncio.run(main(selected_mode))

📣 请知悉:如下方案不保证一定适配你的问题!
如下是针对上述问题进行专业角度剖析答疑,不喜勿喷,仅供参考:

✅️问题理解
你在 browser-use
的纯代码模式里这样用:
from langchain_openai import ChatOpenAI
from browser_use import Agent
llm = ChatOpenAI(...)
agent = Agent(task="...", llm=llm, use_vision=False)
await agent.run()
却报错:
"ChatOpenAI" object has no field "ainvoke"
browser-use
在内部把传入的 llm
当作 LangChain Runnable 来调用(会用到 invoke/ainvoke/stream
)。而你的 ChatOpenAI
实例不具备 ainvoke
方法,根因几乎总是:
- 版本错配:
langchain-openai
太旧(或被其他包降级),不支持 Runnable 接口;或langchain-core
与之不兼容。 - 包混装:同时安装了
openai
官方 SDK、旧版langchain
、langchain-community
等,导致导入到的ChatOpenAI
不是那个带ainvoke
的类。 - browser-use 版本较新,但 LangChain 系列较旧(或反之),接口不匹配。
- Playwright/浏览器驱动没装好会在运行时报别的错,但你当前这个错误与LLM 接口直接相关。
下面给出多套可立即执行、验证闭环的方案。每套都包含:环境准备 → 安装 → 验证点 → 运行示例 → 常见变体。
✅️问题解决方案
建议先选 方案 A(全新环境对齐版本)。如果必须在原环境修复,再选 方案 B。方案 C 是临时适配(不升级也能跑)。
方案 A|全新虚拟环境 + 正确版本组合(推荐)
目标:用同一代 LangChain(支持 Runnable)与 browser-use,对齐到兼容的版本;避免历史残留。
- 创建干净环境(任选其一)
-
venv:
python -m venv .venv # Windows .\.venv\Scripts\activate # macOS/Linux source .venv/bin/activate
-
conda:
conda create -n bu python=3.10 -y conda activate bu
- 一次性安装(固定大版本范围,保证含
ainvoke
)
pip install -U
"browser-use>=0.1.30,<0.2"
"playwright>=1.42"
"langchain>=0.2,<0.3"
"langchain-core>=0.2,<0.3"
"langchain-openai>=0.1.20,<0.2"
"pydantic>=2.6"
"typing_extensions>=4.9"
- 安装浏览器驱动
python -m playwright install
# 如在国内网络,再执行:
# set PLAYWRIGHT_DOWNLOAD_HOST=https://npmmirror.com/mirrors/playwright/ (Windows)
# export PLAYWRIGHT_DOWNLOAD_HOST=https://npmmirror.com/mirrors/playwright/ (Linux/Mac)
# 然后再次 python -m playwright install
- 自检:确认 LLM 具有
ainvoke
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(model="gpt-4o-mini", api_key="dummy", base_url="http://127.0.0.1") # 仅验证接口
print("has invoke:", hasattr(llm, "invoke")) # True
print("has ainvoke:", hasattr(llm, "ainvoke")) # True
两个都为 True 即通过。
- 最小可运行示例(替换为你的 DeepSeek/SiliconFlow)
import asyncio, os
from langchain_openai import ChatOpenAI
from browser_use import Agent
# --- 选择你的供应商 ---
# DeepSeek
os.environ["DEEPSEEK_API_KEY"] = "<你的key>"
llm = ChatOpenAI(
model="deepseek-chat",
api_key=os.environ["DEEPSEEK_API_KEY"],
base_url="https://api.deepseek.com/v1",
)
# # SiliconFlow(DeepSeek V2.5 的 OpenAI 兼容接口)
# os.environ["SILICONFLOW_API_KEY"] = "<你的key>"
# llm = ChatOpenAI(
# model="deepseek-ai/DeepSeek-V2.5",
# api_key=os.environ["SILICONFLOW_API_KEY"],
# base_url="https://api.siliconflow.cn",
# )
async def main():
agent = Agent(
task="访问 https://www.sina.com.cn/ 并输出页面标题",
llm=llm,
use_vision=False, # 只用DOM,不用视觉
)
result = await agent.run()
print("FINAL:", result.final_result())
if __name__ == "__main__":
asyncio.run(main())
-
如果卡在网络:
-
设置代理:
export HTTP_PROXY=http://127.0.0.1:7890 export HTTPS_PROXY=http://127.0.0.1:7890 # Windows PowerShell: # $env:HTTP_PROXY="http://127.0.0.1:7890"; $env:HTTPS_PROXY=$env:HTTP_PROXY
-
浏览器沙箱问题(Linux 容器里):加环境变量
export PLAYWRIGHT_BROWSERS_PATH=0
-
验证口径:
pip show langchain langchain-core langchain-openai browser-use
→ 版本都在上述区间;python -c "from langchain_openai import ChatOpenAI; import inspect; import sys; print('ainvoke exist:', hasattr(ChatOpenAI(), 'ainvoke'))"
→True
;- 运行脚本能自动打开无头浏览器、执行步骤、打印
FINAL:
结果。
方案 B|在原环境“打掉重装”(尽可能不完全重建)
-
卸载可能冲突的包
pip uninstall -y langchain langchain-core langchain-openai langchain-community openai
-
按兼容范围重装
pip install -U "langchain>=0.2,<0.3" "langchain-core>=0.2,<0.3" "langchain-openai>=0.1.20,<0.2" # browser-use 若已安装较新,保留;否则: pip install -U "browser-use>=0.1.30,<0.2"
-
复查 ainvoke
from langchain_openai import ChatOpenAI print(hasattr(ChatOpenAI(), "ainvoke")) # True
-
如果仍为 False:很可能是环境里还有第二份 Python(系统/conda/虚拟环境混用)。
- 用
which python
(Linux/Mac)或where python
(Win)看你正在用哪个解释器; - VS Code 里按
Ctrl+Shift+P
→ 选择解释器 → 选你刚才安装依赖的那个环境; - 重新
pip show langchain-openai
看版本。
- 用
方案 C|适配器兜底(不升级也能跑)
如果由于公司镜像/权限不能动现有版本,可以用适配器给旧 LLM“补”上 Runnable 接口。此法能跑,但后续特性可能受限:
class RunnableLLM:
def __init__(self, llm):
self.llm = llm
def invoke(self, messages, **kwargs):
# 新版
if hasattr(self.llm, "invoke"):
return self.llm.invoke(messages, **kwargs)
# 旧版 LangChain
if hasattr(self.llm, "predict_messages"):
return self.llm.predict_messages(messages, **kwargs)
if hasattr(self.llm, "generate"):
return self.llm.generate([messages], **kwargs)
raise AttributeError("No sync interface")
async def ainvoke(self, messages, **kwargs):
if hasattr(self.llm, "ainvoke"):
return await self.llm.ainvoke(messages, **kwargs)
if hasattr(self.llm, "apredict_messages"):
return await self.llm.apredict_messages(messages, **kwargs)
if hasattr(self.llm, "agenerate"):
return await self.llm.agenerate([messages], **kwargs)
raise AttributeError("No async interface")
使用:
raw_llm = ChatOpenAI(...) # 旧版
llm = RunnableLLM(raw_llm) # 适配
agent = Agent(task="...", llm=llm, use_vision=False)
await agent.run()
注意:适配器是权宜之计。推荐尽快切回 方案 A/B 的官方接口与版本。
方案 D|改用官方 OpenAI 或兼容 SDK(当 LangChain 无法使用时)
browser-use
新版本也支持OpenAI 兼容协议的调用(取决于你本地的分支/版本)。如果库文档确认支持,你可以直接传入一个 兼容 OpenAI Chat Completions 的客户端(或通过 Litellm)。示例(仅当 browser-use
文档明确支持时使用):
from openai import OpenAI
client = OpenAI(api_key=os.getenv("SILICONFLOW_API_KEY"), base_url="https://api.siliconflow.cn")
# 然后参照 browser-use 的 API,把 client 传入(不同版本写法不同)
因为不同版本的
browser-use
对“外部 LLM 注入”的签名可能不同,优先用方案 A/B。当且仅当官方 README/示例显示支持 OpenAI 客户端注入时再用此法。
✅️问题延伸
1)为什么一定要 ainvoke
?
LangChain 自 0.1 起统一“可运行组件(Runnable)”接口:
- 同步:
invoke
- 异步:
ainvoke
- 流式:
stream/astream
browser-use
把 LLM 当成 Runnable 参与一个工具链/代理流水线(解析页面→计划→执行→反思→继续),所以必须能异步调用。
2)如何快速定位“版本错配”?
pip freeze | egrep 'langchain|openai|browser-use|pydantic'
- 若看到
langchain==0.0.x
、langchain-openai==0.0.x
或pydantic==1.x
,基本确定不兼容。 python -c "import langchain,langchain_core,langchain_openai;print(langchain.__version__,langchain_core.__version__,langchain_openai.__version__)"
3)网络与浏览器层面的必备项
python -m playwright install
必做;公司网络下可换镜像或设代理;- Docker/无桌面环境需要
--no-sandbox
或设置PLAYWRIGHT_BROWSERS_PATH
; - 如果运行在服务器上,考虑
use_vision=False
(DOM 模式)会更稳。
4)DeepSeek / SiliconFlow 参数要点
-
base_url
指向它们的 OpenAI 兼容入口; -
model
选择一个确实存在并支持 chat/completions 的模型; -
如果 provider 要求
organization
、app_id
等附加 Header,请用model_kwargs
传入,例如:ChatOpenAI(..., model_kwargs={"extra_headers":{"x-foo":"bar"}})
✅️问题预测
- 若继续在旧版
langchain-openai
上折腾,除了ainvoke
,后续还会在 消息类型(AIMessage
等)、Pydantic v2 迁移、工具调用 上遇到更多接口不兼容。 - pip/conda 混用、多个解释器并存而 VS Code 指向了错误的解释器,很容易让“刚装好的新包”不生效。
- 浏览器驱动未安装或下载失败,会在
agent.run()
时卡住或抛出 Playwright 启动错误。
✅️小结
- 错误本质:传给
browser-use.Agent
的llm
不是 Runnable(缺少ainvoke
),由 LangChain/依赖版本错配或包混装 引起。 - 最稳妥修复:在干净环境中安装
browser-use
+langchain(>=0.2,<0.3)
+langchain-openai(>=0.1.20,<0.2)
,并playwright install
,再运行最小示例验证ainvoke
存在。 - 临时兜底:用适配器给旧 LLM“补”上
ainvoke
、invoke
。 - 验证闭环:检查
hasattr(llm, "ainvoke")
为 True、pip show
版本在指定区间、能打开浏览器并输出FINAL:
结果。
相关排错步骤如下:

希望如上措施及解决方案能够帮到有需要的你。
PS:如若遇到采纳如下方案还是未解决的同学,希望不要抱怨&&急躁,毕竟影响因素众多,我写出来也是希望能够尽最大努力帮助到同类似问题的小伙伴,即把你未解决或者产生新Bug黏贴在评论区,我们大家一起来努力,一起帮你看看,可以不咯。
若有对当前Bug有与如下提供的方法不一致,有个不情之请,希望你能把你的新思路或新方法分享到评论区,一起学习,目的就是帮助更多所需要的同学,正所谓「赠人玫瑰,手留余香」。
🧧🧧 文末福利,等你来拿!🧧🧧
如上问题有的来自我自身项目开发,有的收集网站,有的来自读者…如有侵权,立马删除。再者,针对此专栏中部分问题及其问题的解答思路或步骤等,存在少部分搜集于全网社区及人工智能问答等渠道,若最后实在是没能帮助到你,还望见谅!并非所有的解答都能解决每个人的问题,在此希望屏幕前的你能够给予宝贵的理解,而不是立刻指责或者抱怨!如果你有更优解,那建议你出教程写方案,一同学习!共同进步。
ok,以上就是我这期的Bug修复内容啦,如果还想查找更多解决方案,你可以看看我专门收集Bug及提供解决方案的专栏《全栈Bug调优(实战版)》,都是实战中碰到的Bug,希望对你有所帮助。到此,咱们下期拜拜。
码字不易,如果这篇文章对你有所帮助,帮忙给 bug菌 来个一键三连(关注、点赞、收藏) ,您的支持就是我坚持写作分享知识点传播技术的最大动力。
同时也推荐大家关注我的硬核公众号:「猿圈奇妙屋」 ;以第一手学习bug菌的首发干货,不仅能学习更多技术硬货,还可白嫖最新BAT大厂面试真题、4000G Pdf技术书籍、万份简历/PPT模板、技术文章Markdown文档等海量资料,你想要的我都有!
🫵 Who am I?
我是bug菌,CSDN | 掘金 | InfoQ | 51CTO | 华为云 | 阿里云 | 腾讯云 等社区博客专家,C站博客之星Top30,华为云多年度十佳博主,掘金多年度人气作者Top40,掘金等各大社区平台签约作者,51CTO年度博主Top12,掘金/InfoQ/51CTO等社区优质创作者;全网粉丝合计 30w+;更多精彩福利点击这里;硬核微信公众号「猿圈奇妙屋」,欢迎你的加入!免费白嫖最新BAT互联网公司面试真题、4000G PDF电子书籍、简历模板等海量资料,你想要的我都有,关键是你不来拿。

-End-