优先队列(详解--最大优先队列,最小优先队列)

本文深入讲解了优先队列的概念及其实现方式,包括最大优先队列和最小优先队列的API设计,详细介绍了如何通过上浮算法和下沉算法维护堆的有序性,以及如何进行元素的插入和删除操作。

优先队列

普通的队列是一种先进先出的数据结构,元素在队列尾部追加,从而队列头删除。在某些情况下,我们可能需要找出队列中的最大值或者最小值,例如使用一个队列保存计算机的任务,一般情况下,计算机的任务都是有优先级的,我们需要在这些计算机的任务中找出优先级最高的任务先执行,执行完毕后就需要把这个任务从队列中移除。普通的队列要完成这样的功能,需要每次遍历队列中的所有元素,比较并找出最大值,效率不是很高,这个时候,我们就可以使用一种特殊的队列完成这种需求,优先队列。
在这里插入图片描述
优先队列按照其作用不同,可以分为以下两种:
最大优先队列:
可以获取并删除队列中最大的值;
最小优先队列:
可以获取并删除队列中最小的值;

最大优先队列API设计;
类名MaxPriorityQueue

构造方法public MaxPriorityQueue(int capacity):创建容量为capacity的MaxPriorityQueue对象;
成员方法
1:public int size():获取队列中元素的个数
2: public boolean isEmpty():断队列是否为空
3:private boolean less(int i,int j):判断堆中索引i处的元素是否小于索引j处的元素
4: private void exch(int i,int j):交换堆中i索引和j索引处的值
5: public void insert(T t):往堆中插入一个元素
6: public T delMax():删除堆中最大的元素,并返回这个最大元素
7:private void swim(int k):使用上浮算法,使索引k处的元素能在堆中处于一个正确的位置
8:private void sink(int k):使用下沉算法,使索引k处的元素能在堆中处于一个正确的位置
成员变量
1:private T[] items:存储堆中的元素
2:private int N:记录堆中元素的个数

实现代码如下:

public class MaxPriorityQueue<T extends Comparable<T>> {
    //存储堆中的元素
    private T[] items;
    //记录堆中元素的个数
    private int N;

    public MaxPriorityQueue(int capacity){
        this.items = (T[]) new Comparable[capacity+1];
        this.N = 0;
    }

    //获取队列中元素的个数
    public int size(){
        return N;
    }

    //判断队列是否为空
    public boolean isEmpty(){
        return N == 0;
    }

    //判断堆中索引i处的元素是否小于索引j处的元素
    private boolean less(int i,int j){
        return items[i].compareTo(items[j]) < 0;
    }

    //交换堆中i索引和j索引处的值
    private void exch(int i,int j){
        T temp;
        temp = items[i];
        items[i] = items[j];
        items[j] = temp;
    }

    //往堆中插入一个元素
    public void insert(T t){
        items[++N] = t;
        //使用上浮算法使堆有序
       swim(N);
    }

    //删除堆中最大的元素,并返回这个最大元素
    public T delMax(){
        //利用max保存索引1处的最大值
        T max = items[1];
        //交换
        exch(1,N);
        //删去最大元素,元素个数-1
        N--;
        //使用下沉算法使堆有序
        sink(1);
        //返回最大值
        return max;
    }

    //使用上浮算法,使索引k处的元素能在堆中处于一个正确的位置
    private void swim(int k){
        while (k > 1){
            //比较其父结点和本身的大小
            if(less(k/2,k)){
                exch(k/2,k);
            }

            k = k/2;
        }
    }

    //使用下沉算法,使索引k处的元素能在堆中处于一个正确的位置
    private void sink(int k){
        while (2*k <= N){
            //记录最大元素
            int max;

            if(2*k+1 <= N){//父结点有左子和右子
                if(less(2*k,2*k+1)){
                    max = 2*k+1;
                }else {
                    max = 2*k;
                }
            }else {//父结点只有左字
                max = 2*k;
            }

            //判断父结点是否小于子结点
            if(less(max,k)){
                break;
            }else {
                //
                exch(k,max);
                k = max;
            }
        }
    }
}

测试代码如下:

public class MaxPriorityQueueTest {
    public static void main(String[] args) {
        //创建优先队列
        MaxPriorityQueue<String> queue = new MaxPriorityQueue<>(15);
        //往队列中存储元素
        queue.insert("a");
        queue.insert("m");
        queue.insert("b");
        queue.insert("l");
        queue.insert("c");
        queue.insert("k");
        queue.insert("d");
        queue.insert("j");
        queue.insert("e");
        queue.insert("i");
        queue.insert("f");
        queue.insert("h");
        queue.insert("g");
        //通过循环从队列中获取最大的元素
        while (!queue.isEmpty()){
            String max = queue.delMax();
            System.out.print(max+" ");
        }
    }
}

测试结果如下:
在这里插入图片描述
最小优先队列API设计;
类名MinPriorityQueue

构造方法public MinPriorityQueue(int capacity):创建容量为capacity的MaxPriorityQueue对象;
成员方法
1:public int size():获取队列中元素的个数
2: public boolean isEmpty():断队列是否为空
3:private boolean less(int i,int j):判断堆中索引i处的元素是否小于索引j处的元素
4: private void exch(int i,int j):交换堆中i索引和j索引处的值
5: public void insert(T t):往堆中插入一个元素
6: public T delMin():删除堆中最小的元素,并返回这个最小元素
7:private void swim(int k):使用上浮算法,使索引k处的元素能在堆中处于一个正确的位置
8:private void sink(int k):使用下沉算法,使索引k处的元素能在堆中处于一个正确的位置
成员变量
1:private T[] items:存储堆中的元素
2:private int N:记录堆中元素的个数

实现代码如下:

public class MinPriorityQueue<T extends Comparable<T>>{
    //存储堆中的元素
    private T[] items;
    //记录堆中元素的个数
    private int N;

    public MinPriorityQueue(int capacity){
        this.items = (T[]) new Comparable[capacity+1];
        this.N = 0;
    }

    //获取队列中元素的个数
    public int size(){
        return N;
    }

    //判断队列是否为空
    public boolean isEmpty(){
        return N == 0;
    }

    //判断堆中索引i处的元素是否小于索引j处的元素
    private boolean less(int i,int j){
        return items[i].compareTo(items[j]) < 0;
    }

    //交换堆中i索引和j索引处的值
    private void exch(int i,int j){
        T temp;
        temp = items[i];
        items[i] = items[j];
        items[j] = temp;
    }

    //往堆中插入一个元素
    public void insert(T t){
        items[++N] = t;
        swim(N);
    }

    //删除堆中最小的元素,并返回这个最小元素
    public T delMin(){
        T min = items[1];
        exch(1,N);
        N--;
        sink(1);
        return min;
    }

    //使用上浮算法,使索引k处的元素能在堆中处于一个正确的位置
    private void swim(int k){
        while (k > 1){
            //比较其父结点和本身的大小
            if(less(k,k/2)){
                exch(k,k/2);
            }

            k = k/2;
        }
    }

    //使用下沉算法,使索引k处的元素能在堆中处于一个正确的位置
    private void sink(int k){
        while (2*k <= N){
            //记录最小元素
            int min;

            if(2*k+1 <= N){//父结点有左子和右子
                //找最小值往前方
                if(less(2*k,2*k+1)){
                    min = 2*k;
                }else {
                    min = 2*k+1;
                }
            }else {//父结点只有左字
                min = 2*k;
            }

            //判断父结点是否小于子结点
            if(less(k,min)){
                break;
            }else {
                //交换元素
                exch(k,min);
                k = min;
            }
        }
    }
}

测试代码如下:

public class MinPriorityQueueTest {
    public static void main(String[] args) {
        //创建优先队列
        MinPriorityQueue<String> queue = new MinPriorityQueue<>(15);
        //往队列中存储元素
        queue.insert("a");
        queue.insert("m");
        queue.insert("b");
        queue.insert("l");
        queue.insert("c");
        queue.insert("k");
        queue.insert("d");
        queue.insert("j");
        queue.insert("e");
        queue.insert("i");
        queue.insert("f");
        queue.insert("h");
        queue.insert("g");
        //通过循环从队列中获取最大的元素
        while (!queue.isEmpty()){
            String min = queue.delMin();
            System.out.print(min+" ");
        }
    }
}

测试结果如下:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

碳烤小肥羊。。。

你的鼓励是我创造最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值